Appendix E – Hydraulic Modeling Information

TECHNICAL MEMORANDUM

RE: Hydraulic Profiles for Theresa Street and Northeast WWTP

TO: Drury Whitlock

FROM: Mark Richards

DATE: August 28, 2001

Theresa Street - East Side

Calibration: Calibration was performed at 22.5 mgd through existing system. (15 mgd through Eastside and 7.5 mgd though Westside)

RAS: 50 percent RAS flow of baseflow was assumed.

Aeration Recircul ation: No aeration recirculation was included for calibrations. 8-mgd aeration recirculation was used for the capacity runs.

Capacity: Capacity runs were performed at 16.6,20,26.6, and 33.4 mgd through the Eastside.

Conclusion: This section was very difficult to calibrate. Many of the water surfaces in the hydraulic profile appear to be speculative, and require entering friction coefficients well outside of the range of normal operations.

Summary of Results

Element	Flow (mgd)	Weir Elev. (ft)	Top of Wall Elev. (ft)	Water Surface (ft)
Final Junction MH	16.6		46	45.06
	20			45.18
	26.6			<mark>45.69</mark>
	33.4			<mark>45.92</mark>
Final Channel in	16.6	45.33	47.5	45.71
Chlorine Tank	20			46.13
(below weir)	26.6			<mark>47.37</mark>
	33.4			48.53
Initial Channel in	16.6		47.5	46.49
Chlorine Tank	20			46.90
	26.6			<mark>47.94</mark>
	33.4			<mark>49.10</mark>
Distribution Box	16.6		48	46.93
No. 2	20			47.38
	26.6			<mark>48.77</mark>
	33.4			50.43
Launder in Final	16.6	48	49.5	47.08
Clarifier (below	20			47.56
weir)	26.6			<mark>49.07</mark>
	33.4			50.91
Weir in Final	16.6	48	49.5	47.97
Clarifier (above	20			47.98
weir)	26.6			<mark>49.07</mark>
	33.4			5 0.91

Element	Flow (mgd)	Weir Elev. (ft)	Top of Wall Elev. (ft)	Water Surface (ft)
End of Aeration	16.6	50.33	56.5	48.65
Basin (below weir)	20]		48.96
	26.6]		50.82
	33.4]		53.64
Initial Basin in	16.6		56.5	51.44
Aeration Basin	20]		51.50
	26.6]		51.66
	33.4]		53.65
Launder in Primary	16.6	54.0	55.5	52.34
Clarifier (below	20]		52.46
weir)	26.6]		52.67
	33.4]		54.48
Weir in Primary	16.6	54.0	55.5	53.94
Clarifier (above	20]		53.94
weir)	26.6]		53.96
	33.4]		54.48
Distribution Box	16.6	56.75	61.5	54.34
No. 1	20]		54.53
	26.6	1		55.00
	33.4			56.11
Final Channel in	16.6	58.75	61.5	58.61
Aerated Grit Basin	20]		59.28
(below weir)	26.6	1		60.95
	33.4	1		63.05
Initial Channel in	16.6	60.5	61.5	<mark>61.40</mark>
Aerated Grit Basin	20]		61.52
(above weir)	26.6	1		61.89
	33.4	1		63.38

Major Elements:

Final Junction MH

Channel in Chlorine Tank: water surface was less that 0.5 from top of wall at 26.6 mg d

Final Clarifier: the water surface was within 0.5 ft top of wall at 26.6 mgd and overflowed wall at 33.4 mgd. The initial channel overflowed wall at 20 mgd.

Distribution Box No. 2: water surface overflowed wall at 26.6 mgd

Final Clarifier : water surface was within $0.5~\rm ft$ from top of wall at $26.6~\rm mgd$ and overflowed wall at $33.4~\rm mgd$. Launder and weir are submerged at $26.6~\rm mgd$

Aeration Basin: final weir is submerged at 26.6 mgd

Primary Clarifier Launder and weir are submerged at 33.4 mgd

Distribution Box No. 1: no problems at 33.4 mgd

Aerated Grit Basin . Final weir is submerged at 20 mgd and water surface overflowed top of wall at 20 mgd in the initial channel.

Theresa Street – West Side

Calibration: no calibration was performed, as there was no water surface data against which to calibrate.

RAS: 50 percent RAS flow of baseflow was assumed.

Aeration Recirculation: Assuming no internal recirculation

Capacity: Capacity Runs were performed at 7.5, 10.0, 12.5, and 15.0 mgd.

Conclusion: Since no data was available from which to calibrate, the results of the is hydraulic profile should no be used for design or operation purposes. Typical friction loss coefficient values were chosen.

Summary of Results

Element	Flow (mgd)	Weir Elev. (ft)	Top of Wall Elev. (ft)	Water Surface (ft)
Final Junction MH	7.5		46	45.0
	10.0			45.18
	12.5			45.42
	15.0			45.70
Final Channel in	7.5	45.33	47.5	45.53
Chlorine Tank	10.0			46.13
(below weir)	12.5			46.89
	15.0			<mark>47.82</mark>
Initial Channel in	7.5		47.5	46.38
Chlorine Tank	10.0			46.90
	12.5			<mark>47.52</mark>
	15.0			<mark>48.39</mark>
Distribution Box	7.5		48	46.73
No.1	10.0			47.38
	12.5			48.27
	15.0			<mark>49.47</mark>
Junction Box (after	7.5			46.75
Final Clarifier)	10.0			47.42
	12.5			48.33
	15.0			49.55
Launder in Final	7.5	49.25	51.0	47.52
Clarifier (below	10.0			47.56
weir)	12.5			48.44
	15.0			<mark>49.69</mark>
Weir in Final	7.5	49.25	51.0	49.21
Clarifier (above	10.0			49.22
weir)	12.5			49.22
	15.0			49.69
Channel Junction	7.5	53.0	55.0	49.44
Box (next to	10.0			49.63
overflow)	12.5			49.87
	15.0			50.62
End of Aeration	7.5	53	55.0	49.60
Basin (below weir)	10.0			49.92
	12.5			50.32
	15.0			51.27

Element	Flow (mgd)	Weir Elev. (ft)	Top of Wall Elev. (ft)	Water Surface (ft)
Initial Basin in	7.5		55.0	53.5
Aeration Basin	10.0			53.63
(below weir)	12.5			53.76
	15.0			53.88
Distribution Box	7.5	55.5	57.5	53.55
above Aeration	10.0			53.71
Basin (next to	12.5			53.89
overflow)	15.0			54.07
Launder in Primary	7.5	57.4	58.5	56.11
Clarifier (below	10.0			56.21
weir)	12.5			56.31
	15.0			56.42
Weir in Primary	7.5	57.4	58.5	57.41
Clarifier (above	10.0			57.42
weir)	12.5			57.43
	15.0			57.43
Final Channel in	7.5		60.86	57.50
Aerated Grit Basin	10.0			57.57
(below weir)	12.5			57.66
	15.0			57.77
Initial Aerated Grit	7.5		60.86	60.83
Basin	10.0			<mark>60.91</mark>
	12.5			<mark>60.98</mark>
	15.0			<mark>61.06</mark>

Major Elements

Final Junction MH: water surface is less 0.5-ft from top of wall at 15.0 mgd

Chlorine Tank: water surface in main channel overflowed wall at 15.0 mgd and overflowed wall at 12.5 mgd in initial channel

Distribution Box No.1: water surface overflowed wall at 12.5 mgd

Junction Box (after Final Clarifier): more data on top of wall elevation is needed.

Final Clarifier launder and weir are submerged at 15.0 mgd

Channel Junction Box: no problem at 15.0 mgd

Aeration Basin: no problem at 15.0 mgd

Distribution Box : no problem at 15.0 mgd

Primary Clarifier: no problem at 15.0 mgd

Aerated Grit Basin: water surface overflowed wall at 10.0 mgd

Northeast WWTP

Calibration: calibration was performed at 16 and 8 mgd against the flows shown on the hydraulic profile.

RAS: A 50 percent RAS flow rate of the base flow was assumed through the aeration basins.

Aeration Recirculation: No recirculation though the aeration was used.

Tower Recirculation: 12 mgd recirculation through the tower was run with 8 mgd and 4 mgd was run with 16-mgd baseflow. For the capacity runs 25 percent of the baseflow was used.

Capacity: Capacity runs were run for 20 ,35, and 50 mgd. Area highlighted in yellow are problem areas.

Conclusion: This process train calibrated well when typical friction loss coefficients were used.

Summary of Results:

Element	Flow (mgd)	Weir Elev. (ft)	Top of Wall Elev. (ft)	Water Surface (ft)
Final Junction MH	20		33.5	31.84
	35			32.01
	50			32.28
Final Channel in	20	33.25	35.75	32.16
Chlorine Tank	35			33.01
(below weir)	50			34.32
Mixing Channel in	20		35.75	33.90
Chlorine Tank	35			34.20
	50			34.77
Launder in Final	20	35.75	37.25	34.32
Clarifier (below	35]		34.83
weir)	50]		35.64
Weir in Final	20	35.75	37.25	35.81
Clarifier (above	35]		35.87
weir)	50]		35.91
Channel in Final	20		41.0	36.03
Distr. Box	35			36.52
	50			37.24
End of Aeration	20	37.25	40.2	36.23
Basin (below weir)	35			37.15
	50]		38.53
Prim. Distribution	20	38.5	42.0	37.51
Box (below weir)	35			37.94
	50]		40.02
Tower (water above	20		Bottom of media =	40.68
floor)	35]	42.0	41.32
	50]		43.62
Launder in Primary	20	39.75	41.25	38.46
Clarifier (below	35	1		39.03
weir)	50	1		39.51
Weir in Primary	20	39.75	41.25	39.74
Clarifier (above	35]		39.77
weir)	50			39.81

Element	Flow (mgd)	Weir Elev. (ft)	Top of Wall Elev. (ft)	Water Surface (ft)
Final Channel in	20	40.75	42.5	39.84
Aerated Grit Basin	35			40.08
(below weir)	50			40.42
Aerated Grit Basin	20	40.75	42.5	41.24
(above weir)	35			41.46
	50			41.65
Parshall Flume	20		45	43.91
	35			<mark>45.05</mark>
	50			46.06

Major Elements

Final Junction MH: Appears to have no problem at 50 mgd

Chlorine Tank: final weir was submerged at 50 mgd

Final Clarifier: Launder and weir are submerged at 50 mgd

Final Distribution. Box: no problem at 50 mgd

Aeration Basin: final weir is submerged at 50 mgd

Primary Distribution Box: weir is submerged at 50.0 mgd

Tower: water surface is greater than bottom of media at 50 mgd

Primary Clarifier: no problems at 50.0 mgd

Aerated Grit Basin: no problems at 50 mgd

Parshall Flume: water surface upstream of flume is greater than top of wall at 35.0 mgd.

HYDRAULIC ANALYSIS - PROFILE® MODEL

Theresa Street Eastside 22.5 MGD Model Input (Example) Theresa Street Eastside 22.5 MGD Detailed Output (Example) Theresa Street Eastside 22.5 MGD Summary Output Theresa Street Eastside 25.0 MGD Summary Output Theresa Street Eastside 30.0 MGD Summary Output Theresa Street Eastside 40.0 MGD Summary Output Theresa Street Eastside 50.0 MGD Summary Output Theresa Street Westside 7.5 MGD Summary Output Theresa Street Westside 10.0 MGD Summary Output Theresa Street Westside 12.5 MGD Summary Output Theresa Street Westside 15.0 MGD Summary Output Northeast Influent to Before Tower 8.0 MGD Summary Output Northeast Influent to Before Tower 16.0 MGD Summary Output Northeast Influent to Before Tower 20.0 MGD Summary Output Northeast Influent to Before Tower 35.0 MGD Summary Output Northeast Influent to Before Tower 50.0 MGD Summary Output Northeast Tower to Outfall 8.0 MGD Summary Output Northeast Tower to Outfall 16.0 MGD Summary Output Northeast Tower to Outfall 20.0 MGD Summary Output Northeast Tower to Outfall 35.0 MGD Summary Output Northeast Tower to Outfall 50.0 MGD Summary Output

BBBBB	CCC	BROWN AND CALDWELL			
BBBBBB	ccccc	Consulting Engineers			
BB BBB	CCC CCC				
BB BB	CC CC	PROFILE SERIAL NO. 9901			
BB BBB	CC CC	Version 2.00			
BBBBBB	CC				
BBBBB	CC	File name: C:\PROFIL~2\EASTSI~1.SUM			
BBBBBB	CC ·	Data file: C:\PROFIL~2\EASTSI~1.PRO			
BB BBB	CC CC	THERESA STREET WWTP			
BB BB	CC CC	EAST SIDE 1971			
BB BBB	CC CC	LINCOLN			
BBBBBB	CCCCC				
BBBBB	CCC	8/13/01 By:MARK RICHARDS			

PLANT FLOW = 38.68 CFS OR 25.00 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A740	FIRST CHANNEL IN GRIT CHAM		61.40	61.40
A650	CHANNEL IN AERATED GRIT TANK		59.76	59.76
A610	FINAL CHAN IN AERATED GRIT CHA		58.61	58.61
A580	FIRST CHANNEL IN DIST BOX #1		57.22	57-22
A565	CHANNEL AFTER WEIR IN DIST BOX		54.34	54.34
A510	WEIR PLATE IN PRIMARY CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.49 53.83	53.94	53.94
A500	EFFLUENT LAUNDER IN PRIMARY CL		52.34	52.34
A490	DROP BOX AFTER PRIM CLR	•	51.61	51.61
A450	ZONE#1 IN AEARATION BASIN		51.42	51.44
A380	ZONE 3 IN AEARION BASIN		50.65	50.65
A320	MIXED LIQUOR CH IN AERATION BA	* · · · · · · · · · · · · · · · · · · ·	48.65	48.65
A270	WEIR PLATE IN FINAL CHL FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	.75 47.83	47.97	47.97
A260	COLLECTION LAUNDER IN FINAL CH		47.08	47.08

A255	DROP BOX AFTER FINAL CLR	47.02	47.02
A210	DIST BOX #2	46.92	46.93
A180	FIRST CHANNEL IN CHL TANK	46.59	46.59
A150	1ST PASS IN CHL TANK	46.49	46.49
A80	FINAL CHANNEL IN CHL TANK	45.71	45.71
A40	JUNCTION BOX BEFORE CREEK	45.05	45.06

BBBBB	CCC	BROWN AND CALDW	ELL	
BBBBBB	CCCCC	Consulting Engineers		
BB BBB	CCC CCC			
BB BB	CC CC	PROFILE	SERIAL NO. 9901	
BB BBB	CC CC	Version 2.00		
BBBBBB	CC	* :		
BBBBB	CC	File name: C:\P	ROFIL~2\EASTSI~2.SUM	
BBBBBB	CC .	Data file: C:\P	ROFIL~2\EASTSI~3.PRO	
BB BBB	CC CC	THERESA STREET	WWTP	
BB BB	cc cc	EAST SIDE 1971		
BB BBB	CC CC	LINCOLN		
BBBBBB	CCCCC ₀		•	
BBBBB	CCC	8/13/01	By:MARK RICHARDS	

PLANT FLOW = 46.42 CFS OR 30.00 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A740	FIRST CHANNEL IN GRIT CHAM	•	61.52	61.52
A650	CHANNEL IN AERATED GRIT TANK		59.99	59.99
A610	FINAL CHAN IN AERATED GRIT CHA		59.28	59.28
A580	FIRST CHANNEL IN DIST BOX #1		57.28	57.28
A565	CHANNEL AFTER WEIR IN DIST BOX		54.53	54.53
A510	•	1.37 53.83	53.94	53.94
A500	EFFLUENT LAUNDER IN PRIMARY CL		52.46	52.46
A490	DROP BOX AFTER PRIM CLR		51.74	51.75
A450	ZONE#1 IN AEARATION BASIN		51.48	51.50
A380	ZONE 3 IN AEARION BASIN		50.72	50.72
A320	MIXED LIQUOR CH IN AERATION BA		48.96	48.96
A270	WEIR PLATE IN FINAL CHL FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	.27	47.98	47.98
A260	COLLECTION LAUNDER IN FINAL CH		47.56	47.56

A255	DROP BOX AFTER FINAL CLR	47.52	47.52
A210	DIST BOX #2	47.38	47.38
A180	FIRST CHANNEL IN CHL TANK	46.90	46.90
A150	1ST PASS IN CHL TANK	46.75	46.75
A80	FINAL CHANNEL IN CHL TANK	46.12	46.13
A40	JUNCTION BOX BEFORE CREEK	45.18	45.18

BBBBB BBBBBB	CCCC CCCC	BROWN AND CALDWELL Consulting Engineers
BB BBB	aca aca	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\EASTSI~3.SUM
BBBBBB	CC ·	Data file: C:\PROFIL~2\EASTSI~4.PRO
BB BBB	CC CC	THERESA STREET WWTP
BB BB	CC CC	EAST SIDE 1971
BB BBB	CC CC	LINCOLN
BBBBBB	cccc	
BBBBB	ccc	8/13/01 By:MARK RICHARDS

PLANT FLOW = 61.89 CFS OR 40.00 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A740	FIRST CHANNEL IN GRIT CHAM		61.89	61.89
A650	CHANNEL IN AERATED GRIT TANK	•	61.14	61.14
A610	FINAL CHAN IN AERATED GRIT CHA		60.94	60.95
A580	FIRST CHANNEL IN DIST BOX #1		57.39	57.39
A565	CHANNEL AFTER WEIR IN DIST BOX		54.99	55.00
A510	WEIR PLATE IN PRIMARY CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.16 53.83	53.96	53.96
A500	EFFLUENT LAUNDER IN PRIMARY CL		52.67	52.67
A490	DROP BOX AFTER PRIM CLR		52,09	52.11
A450	ZONE#1 IN AEARATION BASIN		51.63	51.66
A380	ZONE 3 IN AEARION BASIN		51.05	51.05
A320	MIXED LIQUOR CH IN AERATION BA	•	50.82	50.82
A270	WEIR PLATE IN FINAL CHL WEIR SUBMERGED, W.S. DS V-NOTCH INVERT	49.07 47.83	49.07	49.07
A260	COLLECTION LAUNDER IN FINAL CH		49.07	49.07

A255	DROP BOX AFTER FINAL CLR	49.00	49.01
A210	DIST BOX #2	48.76	48.77
A180	FIRST CHANNEL IN CHL TANK	47.91	47.91
A150	1ST PASS IN CHL TANK	47.65	47.65
A80	FINAL CHANNEL IN CHL TANK	47.35	47.37
A40	JUNCTION BOX BEFORE CREEK	45.68	45.69

ввввв ССС		BROWN AND CALDWELL				
BBBBBB	CCCCC	Consulting Engineers				
BB BBB	CCC CCC					
BB BB	CC CC	PROFILE SERIAL NO. 9901				
BB BBB	CC CC	Version 2.00				
BBBBBB	CC					
BBBBB	CC	File name: C:\PROFIL~2\EASTSI~4.SUM				
BBBBBB	CC .	Data file: C:\PROFIL~2\EAF5C5~1.PRO				
BB BBB	CC CC	THERESA STREET WWTP				
BB BB	CC CC	EAST SIDE 1971				
BB BBB	CC CC	LINCOLN				
BBBBBB	CCCCC,					
BBBBB	CCC	8/13/01 By:MARK RICHARDS				

PLANT FLOW = 77.36 CFS OR 50.00 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A740	FIRST CHANNEL IN GRIT CHAM	· .	63.37	63.38
A650	CHANNEL IN AERATED GRIT TANK		63.10	63.10
A610	FINAL CHAN IN AERATED GRIT CHA		63.04	63.05
A580	FIRST CHANNEL IN DIST BOX #1		57.49	57.49
A565	CHANNEL AFTER WEIR IN DIST BOX		56.10	56.11
A510	WEIR PLATE IN PRIMARY CLR WEIR SUBMERGED, W.S. DS V-NOTCH INVERT	54.48 53.83	54.48	54.48
A500	EFFLUENT LAUNDER IN PRIMARY CL		54.48	54.48
A490	DROP BOX AFTER PRIM CLR		54.37	54.38
A450	ZONE#1 IN AEARATION BASIN		53.66	53.68
A380	ZONE 3 IN AEARION BASIN	·	53.65	53.65
A320	MIXED LIQUOR CH IN AERATION BA		53.64	53.64
A270	WEIR PLATE IN FINAL CHL WEIR SUBMERGED, W.S. DS V-NOTCH INVERT	50.91 47.83	50.91	50.91
A260	COLLECTION LAUNDER IN FINAL CH		50.91	50.91

A255	DROP BOX AFTER FINAL CLR	50.80	50.81
A210	DIST BOX #2	50.43	50.43
A180	FIRST CHANNEL IN CHL TANK	49.09	49.10
A150	1ST PASS IN CHL TANK	48.68	48.68
A80	FINAL CHANNEL IN CHL TANK	48.51	48.53
A40	JUNCTION BOX BEFORE CREEK	45.90	45.92

BBBBB CCC BROWN AND CALDWELL

BBBBBB CCCCC Consulting Engineers

BB BBB CC CC PROFILE SERIAL NO. 9901

BB BBB CC CC Version 2.00

BBBBBB CC File name: C:\PROFIL~2\EASTSIDE.det

BBBBBB CC Data file: C:\PROFIL~2\EASTSIDE.pro

BB BB CC CC THERESA STREET WWTP

BB BB CC CC EAST SIDE 1971

BB BBB CC CC LINCOLN

BBBBBB CCCCC

BBBBBB CCCCC

BBBBBB CCC 8/13/01 By:MARK RICHARDS

PLANT FLOW = 34.81 CFS OR 22.50 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

F10

FULL FLOW THROUGH PLANT

FLOW PERCENT

FLOW = 34.81 CFS OR 22.50 MGD

100.00 PERCENT OF TOTAL PLANT FLOW.

A10
OUTFALL AT SALT CREEK
"K"LOSS IN FULL ROUND PIPE
LOSS COEFFICIENT K = 1.000
PIPE DIAMETER = 48.00 INCHES
INVERT ELEVATION = 24.500

VELOCITY = 2.77 FT/SEC ENERGY LOSS, FEET = .119 ENERGY GRADE = 44.889 HYDRAULIC GRADE = 44.770

A20 48" PIPE FROM JB TO OUTFALL DARCY-WEISBACH FRICTION

> PIPE DIAMETER = 48.0000INCHES ROUGHNESS = .0025 FEET LENGTH = 100.0000 FEET

VELOCITY, FPS = 2.77

REYNOLDS NUMBER = 910530.

DARCY-WEISBACH FRICTION FACTOR = .0184

EQUIVALENT HAZEN WILLIAMS C = 122.

EQUIVALENT MANNING COEFFICIENT = .0126

ENERGY LOSS, FEET = .055

ENERGY GRADE = 44.944

HYDRAULIC GRADE = 44.825

A30

EXIT FROM JB

"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = .500

PIPE DIAMETER = 48.00 INCHES
INVERT ELEVATION = 30.000

VELOCITY = 2.77 FT/SEC

ENERGY LOSS, FEET = .060

ENERGY GRADE = 45.004 HYDRAULIC GRADE = 44.884

A40

JUNCTION BOX BEFORE CREEK

RECTANGULAR CONDUIT

HEIGHT = 16.00 FEET

WIDTH = 4.00 FEET LENGTH= 6.00 FEET

MANNING ROUGHNESS = .0130

SLOPE = .00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 30.000

SUBCRITICAL FLOW

		•		AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION	•	
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	14.998	.580	.00001			44.998	45.004
.300	14.998	.580	.00001	.00001	.000	44.998	45.004
.600	14.998	.580	.00001	.00001	.000	44.998	45.004
.900	14.998	.580	.00001	.00001	.000	44.998	45.004
1.200	14.998	.580	.00001	.00001	.000	44.998	45.004
1.500	14.998	.580	.00001	.00001	.000	44.998	45.004
1.800	14.998	.580	.00001	.00001	.000	44.998	45.004
2.100	14.998	.580	.00001	.00001	.000	44.998	45.004
2.400	14.998	.580	.00001	.00001	.000	44.998	45.004
2.700	14.998	.580	.00001	.00001	.000	44.998	45.004
3.000	14.998	.580	.00001	.00001	.000	44.998	45.004
3.300	14.998	.580	.00001	.00001	.000	44.998	45.004
3.600	14.998	.580	.00001	.00001	.000	44.998	45.004
3.900	14.998	.580	:00001	.00001	.000	44.998	45.004
4.200	14.998	.580	.00001	.00001	.000	44.998	45.004
4.500	14.998	.580	.00001	.00001	.000	44.998	45.004
4.800	14.998	.580	.00001	.00001	.000	44.998	45.004
5.100	14.998	.580	.00001	.00001	.000	44.998	45.004
5.400	14.998	.580	.00001	.00001	.000	44.998	45.004
5.700	14.998	.580	.00001	.00001	.000	44.998	45.004
6.000	14.998	.580	.00001	.00001	.000	44.998	45.004

CRITICAL SLOPE, FT/FT = .0044CRITICAL DEPTH, FEET = 1.33 CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000 ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 45.004 HYDRAULIC GRADE = 44.998

FULL FLOW FROM BOTH TRAINS

FLOW PERCENT

FLOW = 34.81 CFS OR 22.50 MGD100.00 PERCENT OF TOTAL PLANT FLOW.

PROFILE SERIAL NO. 9901

BROWN AND CALDWELL PROFILE
Consulting Engineers Version 2.00

A50

ENTRANCE INTO JB

"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 2.200
PIPE DIAMETER = 48.00 INCHES
INVERT ELEVATION = 37.000

VELOCITY = 2.77 FT/SEC

ENERGY LOSS, FEET = .262

ENERGY GRADE = 45.266 HYDRAULIC GRADE = 45.147

A60

48" PIPE FROM CHL TANK TO JB

DARCY-WEISBACH FRICTION

PIPE DIAMETER = 48.0000INCHES

ROUGHNESS = .0055 FEET

LENGTH = 15.0000 FEET

VELOCITY, FPS = 2.77

REYNOLDS NUMBER = 910530.

DARCY-WEISBACH FRICTION FACTOR = .0219

EQUIVALENT HAZEN WILLIAMS C = 111.

EQUIVALENT MANNING COEFFICIENT = .0137

ENERGY LOSS, FEET = .010

ENERGY GRADE = 45.276

HYDRAULIC GRADE = 45.156

A63

90 TURN IN PIPE

"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = .550

PIPE DIAMETER = 48.00 INCHES INVERT ELEVATION = 37.000

VELOCITY = 2.77 FT/SEC

ENERGY LOSS, FEET = .066 ENERGY GRADE = .45.341

HYDRAULIC GRADE = 45.222

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A67

48" PIPE BETWEEN CHL AND JB DARCY-WEISBACH FRICTION

PIPE DIAMETER = 48.0000INCHES
ROUGHNESS = .0055 FEET

LENGTH = 20.0000 FEET

VELOCITY, FPS = 2.77

REYNOLDS NUMBER = 910530.

DARCY-WEISBACH FRICTION FACTOR = .0219

EQUIVALENT HAZEN WILLIAMS C = 111.

EQUIVALENT MANNING COEFFICIENT = .0137

ENERGY LOSS, FEET = .013

ENERGY GRADE = 45.354 HYDRAULIC GRADE = 45.235

A70

48" EXIT FROM CHL TANK

"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 1.500 PIPE DIAMETER = 48.00 INCHES INVERT ELEVATION = 37.000

VELOCITY = 2.77 FT/SEC

ENERGY LOSS, FEET = .179

ENERGY GRADE = 45.533 HYDRAULIC GRADE = 45.414

A80

FINAL CHANNEL IN CHL TANK

RECTANGULAR CONDUIT

HEIGHT = 9.60 FEET

WIDTH = 7.00 FEET LENGTH= 25.00 FEET

MANNING ROUGHNESS = .0130

SLOPE = .00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 37.000

SUBCRITICAL FLOW

WATER FRICTION FRICTION FRICTION STATION DEPTH VELOCITY FACTOR FACTOR LOSS HYDRAULIC EN	ERGY
STATION DEPTH VELOCITY FACTOR FACTOR LOSS HYDRALLIC FAIR	
THOTOM BODD HIDIONIC BIN	
FEET FEET FT/SEC FT/FOOT FT/FOOT FEET GRADE GI	RADE
.000 8.528 .583 .00001 45.528 45	.533
1.250 8.528 .583 .00001 .00001 .000 45.528 45	.533
2.500 8.528 .583 .00001 .00001 .000 45.528 45	.533
3.750 8.528 .583 .00001 .00001 .000 45.528 45	.533
5.000 8.528 .583 .00001 .00001 .000 45.528 45	.533
6.250 8.528 .583 .00001 .00001 .000 45.528 45	.533

	•						
7.500	8.528	.583	.00001	.00001	.000	45.528	45.533
8.750	8.528	.583	.00001	.00001	.000	45.528	45.533
10.000	8.528	.583	.00001	.00001	.000	45.528	45.533
11.250	8.528	.583	.00001	.00001	.000	45.528	45.533
12.500	8.528	.583	.00001	.00001	.000	45.528	45.533
13.750	8.528	.583	.00001	.00001	.000	45.528	45.533
15.000	8.528	.583	.00001	.00001	.000	45.528	45.533
16.250	8.528	.583	.00001	.00001	.000	45.528	45.533
17.500	8.528	.583	.00001	.00001	.000	45.528	45.533
18.750	8.528	.583	.00001	.00001	.000	45.528	45.533
20.000	8.528	.583	.00001	.00001	.000	45.528	45.533
21.250	8,528	.583	.00001	.00001	.000	45.528	45.533
22.500	8.528	.583	.00001	.00001	.000	45.528	45.533
23.750	8.528	.583	.00001	.00001	.000	45.528	45.533
25.000	8.528	.583	.00001	.00001	.000	45.528	45.533

CRITICAL SLOPE, FT/FT = .0035

CRITICAL DEPTH, FEET = .92

CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000

ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 45.533 HYDRAULIC GRADE = 45.528

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

F20 1/2 TOTAL FLOW THROUGH CHL TANK FLOW PERCENT

> FLOW = 17.41 CFS OR 11.25 MGD 50.00 PERCENT OF TOTAL PLANT FLOW.

A85 Sharp Creseti

SHARP CRESETED WEIR IN CHR TANK SHARP-CRESTED WEIR

WEIR CREST ELEVATION = 45.330
WEIR DISCHARGE = 17.41 CFS
LENGTH = 5.00 FEET

NO END CONTRACTIONS

******** WEIR SUBMERGED ********

CALCULATED C VALUE = 3.339

HEIGHT OF WATER OVER WEIR = 1.050

ENERGY LOSS, FEET = .847

ENERGY GRADE = 46.380

HYDRAULIC GRADE = 46.380

A90
4TH PASS IN CHL TANK
RECTANGULAR CONDUIT
HEIGHT = 10.60 FEET
WIDTH = 10.00 FEET
LENGTH= 50.00 FEET

MANNING ROUGHNESS = .0130 SLOPE = .00000 FEET/FOOT NUMBER OF ANALYSIS SECTIONS = 20.00 INVERT ELEV AT OUTLET = 36.000

SUBCRITICAL FLOW

				AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION	*	
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	10.379	.168	.00000			46.379	46.380
2.500	10.379	.168	.00000	.00000	.000	46.379	46.380
5.000	10.379	.168	.00000	.00000	.000	46.379	46.380
7.500	10.379	.168	.00000	.00000	.000	46.379	46.380
10.000	10.379	.168	.00000	.00000	.000	46.379	46.380
12.500	10.379	.168	.00000	.00000	.000	46.379	46.380
15.000	10.379	.168	.00000	.00000	.000	46.379	46.380
17.500	10.379	.168	.00000	.00000	.000	46.379	46.380
20.000	10.379	.168	.00000	.00000	.000	46.379	46.380
22.500	10.379	.168	.00000	.00000	.000	46.379	46.380
25.000	10.379	.168	.00000	.00000	.000	46.379	46.380
27.500	10.379	.168	.00000	.00000	.000	46.379	46.380
30.000	10.379	.168	.00000	.00000	.000	46.379	46.380
32.500	10.379	.168	.00000	.00000	.000	46.379	46.380
35.000	10.379	.168	.00000	.00000	.000	46.379	46.380
37.500	10.379	.168	.00000	.00000	.000	46.379	46.380
40.000	10.379	.168	.00000	.00000	.000	46.379	46.380
42.500	10.379	.168	.00000	.00000	.000	46.379	46.380
45.000	10.379	.168	.00000	.00000	.000	46.379	46.380
47.500	10.379	.168	.00000	.00000	.000	46.379	46.380
50.000	10.37/9	.168	.00000	.00000	.000	46.379	46.380

CRITICAL SLOPE, FT/FT = .0036
CRITICAL DEPTH, FEET = .46
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.379

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A100
180 TURN IN CHL TANK
"K" LOSS IN RECTANGULAR OPEN CHANNEL
WIDTH = 10.00 FEET
INVERT ELEV. = 36.000 FEET
SIDEWALL = 10.60 FEET

LOSS COEFFICIENT "K" = .60

VELOCITY = .17 FT/SEC

ENERGY LOSS, FEET = .000 ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.380

A110

3RD PASS IN CHL TANK RECTANGULAR CONDUIT

HEIGHT = 10.60 FEET

WIDTH = 29.50 FEET

LENGTH= 50.00 FEET

MANNING ROUGHNESS = .0130

SLOPE = ...00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 36.000

SUBCRITICAL FLOW

				AVERAGE			
1,	WATER	5	FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	10.380	.057	.00000			46.380	46.380
2.500	10.380	.057	.00000	.00000	.000	46.380	46.380
5.000	10.380	.057	.00000	.00000	.000	46.380	46.380
7.500	10.380	.057	.00000	.00000	.000	46.380	46.380
10.000	10.380	.057	.00000	.00000	.000	46.380	46.380
12.500	10.380	.057	.00000	.00000	.000	46.380	46.380
15.000	10.380	.057	.00000	.00000	.000	46.380	46.380
17.500	10.380	.057	.00000	.00000	.000	46.380	46.380
20.000	10.380	.057	.00000	.00000	.000	46.380	46.380
22.500	10.380	.057	.00000	.00000	.000	46.380	46.380
25.000	10.380	.057	.00000	.00000	.000	46.380	46.380
27.500	10.380	.057	.00000	.00000	.000	46.380	46.380
30.000	10.380	.057	.00000	.00000	.000	46.380	46.380
32.500	10.380	.057	.00000	.00000	.000	46.380	46.380
35.000	10.380	.057	00000	.00000	.000	46.380	46.380
37.500	10.380	.057	.00000	.00000	.000	46.380	46.380
40.000	10.380	.057	00000	.00000	.000	46.380	46.380
42.500	10.380	.057	.00000	.00000	.000	46.380	46.380
45.000	10.380	.057	.00000	.00000	.000	46.380	46.380
47.500	10.380	.057	.00000	.00000	.000	46.380	46.380
50.000	10.380	.057	.00000	.00000	.000	46.380	46.380

CRITICAL SLOPE, FT/FT = .0041
CRITICAL DEPTH, FEET = .22
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.380

A120 * 180 TURN IN CHL TANK

"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 29.50 FEET
INVERT ELEV. = 36.000 FEET
SIDEWALL = 10.60 FEET
LOSS COEFFICIENT "K" = .60

VELOCITY = .06 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.380

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A130
2ND PASS IN CHL TANK
RECTANGULAR CONDUIT
HEIGHT = 10.60 F

HEIGHT = 10.60 FEET
WIDTH = 29.50 FEET
LENGTH= 50.00 FEET
MANNING ROUGHNESS = .0130
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00
INVERT ELEV AT OUTLET = 36.000

SUBCRITICAL FLOW

				AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
000	10.380	.057	.00000			46.380	46.380
2.500	10.380	.057	.00000	.00000	.000	46.380	46.380
5.000	10.380	.057	.00000	.00000	.000	46.380	46.380
7.500	10.380	.057	.00000	.00000	.000	46.380	46.380
10.000	10.380	.057	.00000	.00000	.000	46.380	46.380
12.500	10.380	.057	.00000	.00000	.000	46.380	46.380
15.000	10.380	.057	.00000	.00000	.000	46.380	46.380
17.500	10.380	.057	.00000	.00000	.000	46.380	46.380
20.000	10.380	.057	.00000	.00000	.000	46.380	46.380
22.500	10.380	.057	.00000	.00000	.000	46.380	46.380
25.000	10.380	.057	.00000	.00000	.000	46.380	46.380
27.500	10.380	.057	.00000	.00000	.000	46.380	46.380
30.000	10.380	. 057	.00000	.00000	.000	46.380	46.380
32.500	10.380	.057	.00000	.00000	.000	46.380	46.380
35.000	10.380	.057	.00000	.00000	.000	46.380	46.380
37.500	10.380	.057	.00000	.00000	.000	46.380	46.380
40.000	10.380	.057	.00000	.00000	.000	46.380	46.380
42.500	10.380	.057	.00000	.00000	.000	46.380	46.380
45.000	10.380	.057	.00000	.00000	.000	46.380	46.380
47.500	10.380	.057	.00000	.00000	.000	46.380	46.380
50.000	10.380	.057	.00000	.00000	.000	46.380	46.380
				*			

CRITICAL DEPTH, FEET = .22
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.380

A140

180 TURN IN CHL TANK
"K" LOSS IN RECTANGULAR OPEN CHANNEL
WIDTH = 29.50 FEET
INVERT ELEV. = 36.000 FEET
SIDEWALL = 10.60 FEET
LOSS COEFFICIENT "K" = .60

VELOCITY = .06 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.380

A150

1ST PASS IN CHL TANK
RECTANGULAR CONDUIT
HEIGHT = 10.60 FEET
WIDTH = 29.50 FEET
LENGTH= 50.00 FEET
MANNING ROUGHNESS = .0130
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 36.000

SUBCRITICAL FLOW

				AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	10.380	.057	.00000			46.380	46.380
2.500	10.380	.057	.00000	.00000	.000	46.380	46.380
5.000	10.380	.057	.00000	.00000	.000	46.380	46.380
7.500	10.380	.057	.00000	.00000	.000	46.380	46.380
10.000	10.380	.057	.00000	.00000	.000	46.380	46.380
12.500	10.380	.057	.00000	.00000	.000	46.380	46.380
15.000	10.380	.057	.00000	.00000	.000	46.380	46.380
17.500	10.380	.057	.00000	.00000	.000	46.380	46.380
20.000	10.380	.057	.00000	.00000	.000	46.380	46.380
22.500	10.380	.057	.00000	.00000	.000	46.380	46.380
25.000	10.380	.057	.00000	.00000	.000	46.380	46.380
27.500	10.380	,057	.00000	.00000	.000	46.380	46.380
30.000	10.380	.057	.00000	.00000	.000	46.380	46.380
32.500	10.380	.057	.00000	.00000	.000	46.380	46.380
35.000	10.380	.057	.00000	.00000	.000	46.380	46.380
37.500	10.380	.057	.00000	.00000	000	46.380	46.380
40.000	10.380	.057	.00000	.00000	.000	46.380	46.380

42.500	10.380	.057	.00000	.00000	. 000	46.380	46 380
45.000	10.380			.00000		46.380	46.380
47.500	10.380		.00000		.000		46.380
50.000	10.380		.00000	.00000	.000		46.380

CRITICAL SLOPE, FT/FT = .0041
CRITICAL DEPTH, FEET = .22
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.380

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A155 90 TURN IN CHL

"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 29.50 FEET
INVERT ELEV. = 36.000 FEET
SIDEWALL = 10.60 FEET
LOSS COEFFICIENT "K" = 2.00

VELOCITY = .06 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 46.380 HYDRAULIC GRADE = 46.380

A170

SUB ORIFICE IN CHL TANK (?)
SUBMERGED RECTANGULAR ORIFICE
NO OF ORIFICES = 1
ORIFICE HEIGHT = 4.00 FEET
ORIFICE WIDTH = 4.00 FEET
DISCHARGE COEFFICIENT = .470

FLOW PER ORIFICE = 17.41 CFS
VELOCITY THROUGH ORIFICE, FPS = 1.09
ENERGY LOSS, FEET = .083
ENERGY GRADE = 46.464
HYDRAULIC GRADE = 46.464

F30 FULL FLOW IN CHL TANK FLOW PERCENT

> FLOW = 34.81 CFS OR 22.50 MGD 100.00 PERCENT OF TOTAL PLANT FLOW.

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A180 FIRST CHANNEL IN CHL TANK RECTANGULAR CONDUIT

HEIGHT = 15.50 FEET WIDTH = 8.00 FEETLENGTH= 16.00 FEET MANNING ROUGHNESS = .0130 SLOPE = .00000 FEET/FOOT NUMBER OF ANALYSIS SECTIONS = 20.00 INVERT ELEV AT OUTLET = 31.000

SUBCRITICAL FLOW

		,		AVERAGE			•
	WATER		FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	ĻOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	15.462	.281	.00000			46.462	46.464
.800	15.462	.281	.00000	.00000	.000	46.462	46.464
1.600	15.462	.281	.00000	.00000	.000	46.462	46.464
2.400	15.462	.281	.00000	.00000	.000	46.462	46.464
3.200	15.462	.281	.00000	.00000	.000	46.462	46.464
4.000	15.462	.281	.00000	.00000	.000	46.462	46.464
4.800	15.462	.281	.00000	.00000	.000	46.462	46.464
5.600	15.462	.281	.00000	.00000	.000	46.462	46.464
6.400	15.462	.281	.00000	.00000	.000	46.462	46.464
7.200	15.462	.281	.00000	.00000	.000	46.462	46.464
8.000	15.462	.281	.00000	.00000	.000	46.462	46.464
8.800	15.462	.281	.00000	.00000	.000	46.462	46.464
9.600	15.462	.281	.00000	.00000	.000	46.462	46.464
10.400	15.462	.281	.00000	.00000	.000	46.462	46.464
11.200	15.462	.281	.00000	.00000	.000	46.462	46.464
12.000	15.462	.281	.00000	.00000	.000	46.462	46.464
12.800	15.462	.281	.00000	.00000	.000	46.462	46.464
13.600	15.462	.281	.00000	.00000	.000	46.462	46.464
14.400	15.462	.281	.00000	.00000	.000	46.462	46.464
15.200	15.462	.281	.00000	.00000	000	46.462	46.464
16.000	15.462	.281	.00000	.00000	.000		46.464

CRITICAL SLOPE, FT/FT = .0034 CRITICAL DEPTH, FEET = .84 CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000 ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 46.464

HYDRAULIC GRADE = 46.462

A185

60" ENTRANCE INTO CHL TANK "K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 3.000

PIPE DIAMETER = 60.00 INCHES INVERT ELEVATION = 31.000

VELOCITY = 1.77 FT/SEC ENERGY LOSS, FEET = .146

ENERGY GRADE = 46.610 HYDRAULIC GRADE = 46.561

A190

60" PIPE BETWEEN DIST BOX AND CHL TANK DARCY-WEISBACH FRICTION

PIPE DIAMETER = 60.0000INCHES

ROUGHNESS = .0060 FEET

LENGTH = 55.0000 FEET

VELOCITY, FPS = 1.77

REYNOLDS NUMBER = 728424.

DARCY-WEISBACH FRICTION FACTOR = .0213

EQUIVALENT HAZEN WILLIAMS C = 114. EQUIVALENT MANNING COEFFICIENT = .0140

ENERGY LOSS, FEET = .011

ENERGY GRADE = 46.621 HYDRAULIC GRADE = 46.573

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

60" PIPE EXIT FROM DIST BOX "K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 2.300
PIPE DIAMETER = 60.00 INCHES
INVERT ELEVATION = 31.000

VELOCITY = 1.77 FT/SEC

ENERGY LOSS, FEET = .112

ENERGY GRADE = 46.734 HYDRAULIC GRADE = 46.685

F30

FULL FLOW WITH 1965 TRAIN

FLOW PERCENT

FLOW = 34.81 CFS OR 22.50 MGD

100.00 PERCENT OF TOTAL PLANT FLOW.

A210

DIST BOX #2

RECTANGULAR CONDUIT

HEIGHT = 27.00 FEET

WIDTH = 8.00 FEET

LENGTH= 8.00 FEET

MANNING ROUGHNESS = .0200

SLOPE = .00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 31.000

SUBCRITICAL FLOW

AVERAGE

FRICTION FRICTION FRICTION WATER

DEPTH VELOCITY FACTOR FACTOR LOSS HYDRAULIC ENERGY STATION

FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	15.733	.277	.00000			46.733	46.734
.400	15.733	.277	.00000	.00000	.000	46.733	46.734
.800	15.733	.277	.00000	.00000	.000	46.733	46.734
1.200	15.733	.277	.00000	.00000	.000	46.733	46.734
1.600	15.733	.277	.00000	.00000	.000	46.733	46.734
2.000	15.733	.277	.00000	.00000	.000	46.733	46.734
2.400	15.733	.277	.00000	.00000	.000	46.733	46.734
2.800	15.733	.277	.00000	.00000	.000	46.733	46.734
3.200	15.733	.277	.00000	.00000	.000	46.733	46.734
3.600	15.733	.277	.00000	.00000	.000	46.733	46.734
4.000	15.733	.277	.00000	.00000	.000	46.733	46.734
4.400	15.733	.277	.00000	.00000	.000	46.733	46.734
4.800	15.733	.277	.00000	.00000	.000	46.733	46.734
5.200	15.733	.277	.00000	.00000	.000	46.733	46.734
5.600	15.733	.277	.00000	.00000	.000	46.733	46.734
6.000	15.733	.277	.00000	.00000	.000	46.733	46.734
6.400	15.733	.277	.00000	.00000	.000	46.733	46.734
6.800	15.733	.277	.00000	.00000	.000	46.733	46.734
7.200	15.733	.277	.00000	.00000	.000	46.733	46.734
7.600	15.733	.277	.00000	.00000	.000	46.733	46.734
8.000	15.733	.277	.00000	.00000	.000	46.733	46.734

CRITICAL SLOPE, FT/FT = .0080

CRITICAL DEPTH, FEET = .84

CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000

ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 46.734 HYDRAULIC GRADE = 46.733

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

F40

1/2 FLOW THROUGH PRC TRAIN 1971 FLOW PERCENT

FLOW = 11.49 CFS OR 7.43 MGD 33.00 PERCENT OF TOTAL PLANT FLOW.

A230

30" ENTRANCE INTO DISTR BOX #2
"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = .500

PIPE DIAMETER = 30.00 INCHES

INVERT ELEVATION = 41.790

VELOCITY = 2.34 FT/SEC ENERGY LOSS, FEET = .043 ENERGY GRADE = 46.776 HYDRAULIC GRADE = 46.691

A240

30" PIPE FROM FINAL BASIN TO DISTR BOX#2

DARCY-WEISBACH FRICTION

PIPE DIAMETER = 30.0000INCHES

ROUGHNESS = .0020 FEET

LENGTH = 25.0000 FEET

VELOCITY, FPS =

REYNOLDS NUMBER = 480760.

DARCY-WEISBACH FRICTION FACTOR = .0197 EQUIVALENT HAZEN WILLIAMS C = 124.

EQUIVALENT MANNING COEFFICIENT = .0120

ENERGY LOSS, FEET = .017 ENERGY GRADE = 46.793

46.708 HYDRAULIC GRADE =

BROWN AND CALDWELL

PROFILE SERIAL NO. 9901

Consulting Engineers

Version 2.00

A250

30" PIPE ENTRANCE AFTER FINAL CLR

"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = .200

PIPE DIAMETER = 30.00 INCHES

INVERT ELEVATION = 41.790

VELOCITY = 2.34 FT/SEC

ENERGY LOSS, FEET = .017

ENERGY GRADE = 46.810 HYDRAULIC GRADE = 46.725

A255

DROP BOX AFTER FINAL CLR

RECTANGULAR CONDUIT

HEIGHT = 7.47 FEET

WIDTH = 7.00 FEET

LENGTH= 3.00 FEET

MANNING ROUGHNESS = .0100

SLOPE = .00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 42.030

SUBCRITICAL FLOW

STATION FEET	WATER DEPTH FEET	VELOCITY FT/SEC	FRICTION FACTOR FT/FOOT	AVERAGE FRICTION FACTOR FT/FOOT	FRICTION LOSS FEET	HYDRAULIC GRADE	ENERGY GRADE
.000	4.778	.343	.00000			46.808	46.810
.150	4.778	.343	.00000	.00000	.000	46.808	46.810
.300	4.778	.343	.00000	.00000	.000	46.808	46.810
.450	4.778	.343	.00000	.00000	.000	46.808	46.810
.600	4.778	.343	.00000	.00000	.000	46.808	46.810
.750	4.778	.343	.00000	.00000	.000	46.808	46.810
.900	4.778	.343	.00000	.00000	.000	46.808	46.810
1.050	4.778	.343	.00000	.00000	.000	46.808	46.810
1.200	4.778	.343	.00000	.00000	.000	46.808	46.810

1.350	4.778	.343	.00000	.00000	.000	46.808	46.810
1.500	4.778	.343	.00000	.00000	.000	46.808	46.810
1.650	4.778	.343	.00000	.00000	.000	46.808	46.810
1.800	4.778	.343	.00000	.00000	.000	46.808	46.810
1.950	4.778	.343	.00000	.00000	.000	46.808	46.810
2.100	4.778	.343	.00000	.00000	.000	46.808	46.810
2.250	4.778	.343	.00000	.00000	.000	46.808	46.810
2.400	4.778	.343	.00000	.00000	.000	46.808	46.810
2.550	4.778	.343	.00000	.00000	.000	46.808	46.810
2.700	4.778	.343	.00000	.00000	.000	46.808	46.810
2.850	4.778	.343	.00000	.00000	.000	46.808	46.810
3.000	4,778	.343	.00000	.00000	.000	46.808	46.810
	4.44						

CRITICAL SLOPE, FT/FT = .0022
CRITICAL DEPTH, FEET = .44
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 46.810 HYDRAULIC GRADE = 46.808

A260

COLLECTION LAUNDER IN FINAL CHL

RECTANGULAR LAUNDER

UPSTREAM WIDTH = 2.50 FEET

DOWNSTREAM WIDTH = 2.50 FEET

LAUNDER SIDEWALL HEIGHT = 2.00 FEET

LENGTH = 194.80 FEET

MANNINGS ROUGHNESS = .0100FEET

SLOPE = .00000 FEET/FOOT

INVERT ELEV AT OUTLET = 45.800

DISCHARGE AT OUTLET = 3.71 MGD

	DELTA			ī	MOMENTU	M	DELTA	L .	
	DEPTH	WATER	FLOW	VELOCITY	DELTA	FRICTION	DEPTH	HYDRAULIC	ENERGY
STATION	ASSUMED	DEPTH	CFS	FT/SEC	DEPTH	LOSS	CALC	GRADE	GRADE
.00		.914	5.74	2.51				46.714	46.810
6.49	.013	.927	5.55			E 004	010		
					.01		.019		46.816
12.99	.012	.939	5.36	2.28	.01	4004	.018	46.739	46.820
19.48	.011	.950	5.17	2.18	.01	3 .003	.016	46.750	46.824
25.97	.011	.961	4.98	2.07	.01	2 .003	.015	46.761	46.828
32.47	.010	.971	4.79	1.97	.01	1 .003	.014	46.771	46.831
38.96	.009	.981	4.60	1.87	.01	0 .002	013	46.781	46.835
45.45	.009	.989	4.40	1.78	.01	0 .002	.012	46.789	46.839
51.95	.008	.998	4.21	1.69	.00	9 .002	.011	46.798	46.842
58.44	.008	1.006	4.02	1.60	.00	8	.010	46.806	46.845
64.93	.007	1.013	3.83	1.51	.00	8 .002	.009	46.813	46.849
71.43	.007	1.020	3.64	1.43	.00	7 .001	.002	46.820	46.852
77.92	.006	1.026	3.45	1.34	.00	7 .001	.008	46.826	46.854
84.41	.006	1.033	3.25	1.26	.00	6 .001	.007	46.833	46.857
90.91	.006	1.038	3.06	1.18	.00	6 .001	.007	46.838	46.860
97.40	.005	1.043	2.87	1.10	.00	5 .001	.006	46.843	46.862
103.89	.005	1.048	2.68	1.02	.00	5 .001	.006	46.848	46.864

```
WATER DEPTH AT UPSTREAM END OF LAUNDER = 1.08
   CHANGE IN HYDRAULIC GRADE WITHIN LAUNDER = .166
   ENERGY LOSS, FEET = .070
                  PROFILE SERIAL NO. 9901
Version 2.00
BROWN AND CALDWELL
Consulting Engineers
A270
WEIR PLATE IN FINAL CHL
```

V-NOTCH WEIR PLATE WEIR: DISCHARGE = 11.49 CFS LENGTH = 389.56 FEET TOP OF PLATE ELEV = 48.000 V-NOTCH: SPACING = 6.00 INCHES ANGLE = 90.00 DEGREES DEPTH = 2.00 INCHES
INVERT = 47.833

> FREEBOARD = .953ENERGY LOSS, FEET = 1.082

WS ELEV DOWNSTREAM OF WEIR = 46.880

ENERGY GRADE = 47.962 HYDRAULIC GRADE = 47.962

F67 1/2 FLOW WITH 1/2 RAS FLOW PERCENT

FLOW = 17.41 CFS OR 11.25 MGD 50.00 PERCENT OF TOTAL PLANT FLOW.

A280 30" PIPE OPENING "K"LOSS IN FULL ROUND PIPE LOSS COEFFICIENT K = 1.000

PIPE DIAMETER = 30.00 INCHES INVERT ELEVATION = 28.920

VELOCITY = 3.55 FT/SEC ENERGY LOSS, FEET = .195 ENERGY GRADE = 48.157 HYDRAULIC GRADE = 47.962 EQUIVALENT HAZEN WILLIAMS C = 110. EQUIVALENT MANNING COEFFICIENT = .0130 ENERGY LOSS, FEET = .144 ENERGY GRADE = 48.418 HYDRAULIC GRADE = 48.223

A310

30" ENTRANCE AFTER AERATION BASIN "K"LOSS IN FULL ROUND PIPE LOSS COEFFICIENT K = .500 PIPE DIAMETER = 30.00 INCHES INVERT ELEVATION = 31.510

VELOCITY = 3.55 FT/SEC ENERGY LOSS, FEET = .098 ENERGY GRADE = 48.516 HYDRAULIC GRADE = 48.321

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A320 MIXED LIOUOR CH IN AERATION BASIN RECTANGULAR CONDUIT HEIGHT = 24.50 FEET

WIDTH = 3.00 FEET LENGTH= 56.00 FEET MANNING ROUGHNESS = .0130 SLOPE = .00000 FEET/FOOT NUMBER OF ANALYSIS SECTIONS = 20.00 INVERT ELEV AT OUTLET = 31.500

SUBCRITICAL FLOW

	WATER		FRICTION	AVERAGE FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
reer .	r ii ii 1	E1/DEC	11/1001	11/1001		GIGIDE .	CIGIDE
.000	17.014	.341	.00001			48.514	48.516
2.800	17.014	.341	.00001	.00001	.000	48.514	48.516
5.600	17.014	.341	.00001	.00001	.000	48.514	48.516
8.400	17.014	.341	.00001	.00001	.000	48.514	48.516
11.200	17.014	.341	.00001	.00001	.000	48.514	48.516
14.000	17.014	.341	.00001	.00001	.000	48.514	48.516
16.800	17.014	.341	.00001	.00001	.000	48.514	48.516
19.600	17.014	.341	.00001	.00001	.000	48.514	48,516
22.400	17.014	.341	.00001	.00001	.000	48.514	48.516
25.200	17.014	.341	.00001	.00001	.000	48.514	48.516
28.000	17.014	.341	.00001	.00001	.000	48.514	48.516
30.800	17.014	.341	.00001	.00001	.000	48.514	48.516
33.600	17.014	.341	.00001	.00001	.000	48.514	48.516
36.400	17.015	.341	.00001	.00001	.000	48.515	48.516
39.200	17.015	.341	.00001	.00001	.000	48.515	48.516
42.000	17.015	.341	.00001	.00001	.000	48.515	48.516
44.800	17.015	.341	.00001	.00001	.000	48.515	48.516
47.600	17.015	.341	.00001	.,00001	.000	48.515	48.516
50.400	17.015	.341	.00001	.00001	.000	48.515	48.516
53.200	17.015	.341	.00001	.00001	.000	48.515	48,516
56.000	17.015	.341	.00001	.00001	.000	48.515	48.516

CRITICAL SLOPE, FT/FT = .0049
CRITICAL DEPTH, FEET = 1.01
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 48.516 HYDRAULIC GRADE = 48.515

A330

180 TURN IN AERATION
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 44.00 FEET
INVERT ELEV. = 47.790 FEET
SIDEWALL = 24.50 FEET
LOSS COEFFICIENT "K" = .60

VELOCITY = .55 FT/SEC ENERGY LOSS, FEET = .003 ENERGY GRADE = 48.519 HYDRAULIC GRADE = 48.515

A340
WEIR #4 IN AERATION
SHARP-CRESTED WEIR
WEIR CREST ELEVATION = 50.000

WEIR DISCHARGE = 17.41 CFS LENGTH = 20.00 FEET

NO END CONTRACTIONS
FREEBOARD = 1.485
CALCULATED C VALUE = 3.330
HEIGHT OF WATER OVER WEIR = .409
ENERGY LOSS, FEET = 1.889
ENERGY GRADE = 50.409
HYDRAULIC GRADE = 50.409

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A350
ZONE #4 IN AEARION BASIN
RECTANGULAR CONDUIT
HEIGHT = 24.50 FEET
WIDTH = 44.00 FEET
LENGTH= 92.00 FEET
MANNING ROUGHNESS = .0130
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00
INVERT ELEV AT OUTLET = 31.500

SUBCRITICAL FLOW

•				AVERAGE			•
	WATER		FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
		*					
.000	18.909	.021	.00000			50.409	50.409
4.600	18.909	.021	.00000.	.00000	.000	50.409	50.409
9.200	18.909	.021	.00000	.00000	.000	50.409	.50.409
13.800	18.909	.021	.00000	.00000	.000	50.409	50.409
18.400	18.909	.021	.00000	.00000	.000	50.409	50.409
23.000	18.909	.021	.00000	.00000	.000	50.409	50.409
27.600	18.909	.021	.00000	.00000	.000	50.409	50.409
32.200	18.909	.021	.00000	.00000	.000	50.409	50.409
36.800	18.909	.021	.00000	.00000	.000	50.409	50.409
41.400	18.909	.021	.00000	.00000	.000	50.409	50.409
46.000	18.909	.021	.00000	.00000	.000	50.409	50.409
50.600	18.909	.021	.00000	.00000	.000	50.409	50.409
55.200	18.909	.021	.00000	.00000	.000	50.409	50.409
59.800	18.909	.021	.00000	.00000	.000	50.409	50.409
64.400	18.909	.021	.00000	.00000	.000	50.409	50.409
69.000	18.909	.021	.00000	.00000	.000	50.409	50.409
73.600	18.909	.021	.00000	.00000	.000	50.409	50.409
78.200	18.909	.021	.00000	.00000	.000	50.409	50.409
82.800	18.909	.021	.00000	.00000	.000	50.409	50.409
87.400	18.909	.021	.00000	.00000	.000	50.409	50.409
92.000	18.909	.021	.00000	.00000	.000	50.409	50,409

CRITICAL DEPTH, FEET = .17
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 50.409 HYDRAULIC GRADE = 50.409

A360

180 TUNE IN AEARATION BASIN
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 44.00 FEET
INVERT ELEV. = 31.500 FEET
SIDEWALL = 24.50 FEET
LOSS COEFFICIENT "K" = .60

VELOCITY = .02 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 50.409 HYDRAULIC GRADE = 50.409

A370
WEIR #3 IN AEARATION BASIN
SHARP-CRESTED WEIR
WEIR CREST ELEVATION = 49.830
WEIR DISCHARGE = 17.41 CFS
LENGTH = 20.00 FEET

NO END CONTRACTIONS

********** WEIR SUBMERGED *********

CALCULATED C VALUE = 3.331

HEIGHT OF WATER OVER WEIR = .647

ENERGY LOSS, FEET = .068

ENERGY GRADE = 50.477

HYDRAULIC GRADE = 50.477

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A380
ZONE 3 IN AEARION BASIN
RECTANGULAR CONDUIT
HEIGHT = 24.50 FEET
WIDTH = 23.00 FEET
LENGTH= 92.00 FEET
MANNING ROUGHNESS = .0130
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 31.500

SUBCRITICAL FLOW

AVERAGE

WATER FRICTION FRICTION

STATION DEPTH VELOCITY FACTOR FACTOR LOSS HYDRAULIC

FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	18.977	.040	.00000	•		50.477	50.477
4,600	18.977	.040	.00000	.00000	.000	50.477	50.477
9.200	18.977	.040	.00000	.00000	.000	50.477	50.477
13.800	18.977	.040	.00000	.00000	.000	50.477	50.477
18.400	18.977	.040	.00000	.00000	.000	50.477	50.477
23.000	18.977	.040	.00000	.00000	.000	50.477	50.477
27.600	18.977	.040	.00000	.00000	.000	50.477	50.477
32,200	18.977	.040	.00000	.00000	.000	50.477	50.477
36.800	18,977	.040	.00000	.00000	.000	50.477	50.477
41.400	18.977	.040	.00000	.00000	.000	50.477	50.477
46.000	18.977	.040	.00000	.00000	.000	50.477	50.477
50.600	18.977	.040	.00000	.00000	.000	50.477	50.477
55.200	18.977	.040	.00000	.00000	.000	50.477	50.477
59.800	18.977	.040	.00000	.00000	.000	50.477	50.477
64.400	18.977	.040	.00000	.00000	.000	50.477	50.477
69.000	18.977	.040	.00000	.00000	.000	50.477	50.477
73.600	18.977	.040	.00000	.00000	.000	50.477	50.477
78.200	18.977	.040	.00000	.00000	.000	50.477	50.477
82.800	18.977	.040	.00000	.00000	.000	50.477	50.477
87.400	18.977	.040	.00000	.00000	.000	50.477	50.477
92.000	18.977	.040	.00000	.00000	.000	50.477	50.477

CRITICAL SLOPE, FT/FT = .0040
CRITICAL DEPTH, FEET = .26
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 50.477 HYDRAULIC GRADE = 50.477

A390

180 TURN IN AERATION BASIN
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 23.00 FEET
INVERT ELEV. = 31.500 FEET
SIDEWALL = 24.50 FEET
LOSS COEFFICIENT "K" = .60

VELOCITY = .04 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 50.477 HYDRAULIC GRADE = 50.477

A400

WEIR #2 IN AEARATION BASIN
SHARP-CRESTED WEIR
WEIR CREST ELEVATION = 50.180
WEIR DISCHARGE = 17.41 CFS
LENGTH = 20.00 FEET

NO END CONTRACTIONS

******* WEIR SUBMERGED *******

CALCULATED C VALUE = 3.331
HEIGHT OF WATER OVER WEIR = .480
ENERGY LOSS, FEET = .183
ENERGY GRADE = 50.660
HYDRAULIC GRADE = 50.660

BROWN AND CALDWELL Consulting Engineers PROFILE

SERIAL NO. 9901

Version 2.00

A410

ZONE #2 IN AEARATION BASIN

RECTANGULAR CONDUIT

HEIGHT = 24.50 FEET

WIDTH = 24.00 FEET

LENGTH= 92.00 FEET

MANNING ROUGHNESS = .0130

SLOPE = .00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 31.500

SUBCRITICAL FLOW

		•		AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION	-	
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
2 3322 2		,		,			
.000	19.160	.038	.00000			50.660	50.660
4.600	19.160	.038	.00000	.00000	.000	50.660	50.660
9.200	19.160	.038	.00000	.00000	.000	50.660	50.660
13.800	19.160	.038	.00000	.00000	.000	50.660	50.660
18.400	19.160	.038	.00000	.00000	.000	50.660	50.660
23.000	19.160	.038	.00000	.00000	.000	50.660	50.660
27.600	19.160	.038	.00000	.00000	.000	50.660	50.660
32.200	19.160	.038	.00000	.00000	.000	50.660	50.660
36.800	19.160	.038	.00000	.00000	.000	50.660	50.660
41.400	19.160	.038	.00000	.00000	.000	50.660	50.660
46.000	19.160	.038	.00000	.00000	.000	50.660	50.660
50.600	19.160	.038	.00000	.00000	.000	50.660	50.660
55.200	19.160	.038	.00000	.00000	.000	50.660	50.660
59.800	19.160	.038	.00000	.00000	.000	50.660	50.660
64.400	19.160	.038	.00000	.00000	.000	50.660	50.660
69.000	19.160	.038	.00000	.00000	.000	50.660	50.660
73.600	19.160	.038	.00000	.00000	.000	50.660	50.660
78.200	19.160	.038	.00000	.00000	.000	50.660	50.660
82.800	19.160	.038	.00000	.00000	.000	50.660	50.660
87.400	19.160	.038	.00000	.00000	.000	50.660	50.660
92.000	19.160	.038	.00000	.00000	.000	50.660	50.660
					and the second s		

CRITICAL SLOPE, FT/FT = .0040
CRITICAL DEPTH, FEET = .25
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 50.660 HYDRAULIC GRADE = 50.660

A420

180 TURN IN AEATION BASIN
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 23.00 FEET
INVERT ELEV. = 31.500 FEET
SIDEWALL = 24.50 FEET
LOSS COEFFICIENT "K" = .60

VELOCITY = .04 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 50.660 HYDRAULIC GRADE = 50.660

A430

WEIR #1 IN AEARATION BASIN SHARP-CRESTED WEIR

WEIR CREST ELEVATION = 48.000 WEIR DISCHARGE = 17.41 CFS LENGTH = 20.00 FEET

NO END CONTRACTIONS

******** WEIR SUBMERGED ********

CALCULATED C VALUE = 3.347

HEIGHT OF WATER OVER WEIR = 2.661

ENERGY LOSS, FEET = .001

ENERGY GRADE = 50.661

HYDRAULIC GRADE = 50.661

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A450

ZONE#1 IN AEARATION BASIN RECTANGULAR CONDUIT

HEIGHT = 24.50 FEET
WIDTH = 8.00 FEET
LENGTH= 42.00 FEET
MANNING ROUGHNESS = .0130

SLOPE = .00000 FEET/FOOT NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 47.790

SUBCRITICAL FLOW

				AVERAGE			
STATION FEET	WATER DEPTH FEET	VELOCITY FT/SEC	FRICTION FACTOR FT/FOOT	FRICTION FACTOR FT/FOOT	FRICTION LOSS FEET	HYDRAULIC GRADE	ENERGY GRADE
.000	2.862 2.862	.760 .760	.00002	.00002	.000	50.652 50.652	50.661 50.661
4.200	2.862	.760	.00002	.00002	.000	50.652	50.661

6.300	2.862	.760	.00002	.00002	.000	50.652	50.661
8.400	2.862	.760	.00002	.00002	.000	50.652	50.661
10.500	2.862	.760	.00002	.00002	.000	50.652	50.661
12.600	2.862	.760	.00002	.00002	.000	50.652	50.661
14.700	2.862	.760	.00002	.00002	.000	50.652	50.661
16.800	2.862	.760	.00002	.00002	.000	50.652	50.661
18.900	2.862	.760	.00002	.00002	.000	50.652	50.661
21.000	2.862	.760	.00002	.00002	.000	50.652	50.661
23.100	2.862	.760	.00002	.00002	.000	50.652	50.661
25.200	2.862	.760	.00002	.00002	.000	50.652	50.661
27.300	2.862	.760	.00002	.00002	.000	50.652	50,661
29.400	2.862	.760	.00002	.00002	.000	50.652	50.661
31.500	2.862	.760	.00002	.00002	.000	50.652	50.661
33.600	2.862	.760	.00002	.00002	000	50.652	50,661
35.700	2.863	.760	.00002	.00002	.000	50.653	50.661
37.800	2.863	.760	.00002	.00002	.000	50.653	50.662
39.900	2.863	.760	.00002	.00002	.000	50.653	50.662
42.000	2.863	.760	.00002	.00002	.000	50.653	50.662

CRITICAL SLOPE, FT/FT = .0036CRITICAL DEPTH, FEET = .53 CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .001 ENERGY LOSS, FEET = .001

INLET CONDITIONS:

ENERGY GRADE = 50.662 HYDRAULIC GRADE = 50.653

F80

HALF FLOW WITH NO RAS NO RECYCLE FLOW PERCENT

FLOW = 11.49 CFS OR 7.43 MGD33.00 PERCENT OF TOTAL PLANT FLOW.

A460

30" PIPE ENTRANCE

"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 1.000

PIPE DIAMETER = 30.00 INCHES INVERT ELEVATION = 47.790

VELOCITY = 2.34 FT/SEC

ENERGY LOSS, FEET = .085

ENERGY GRADE = 50.747

HYDRAULIC GRADE = 50.662

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A470

30" PIPE BETWEEN PRIM BASIN AND AERATION BASIN ROUND CONDUIT

DIAMETER = 30.00 INCHES

LENGTH= 10.00 FEET

MANNING ROUGHNESS = .0130

SLOPE = .00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00 INVERT ELEV AT OUTLET = 47.790

SUBCRITICAL FLOW

CONDUIT OUTLET SUBMERGED

FULL CONDUIT FLOW THROUGHOUT LENGTH

FRICTION FACTOR = .00078 FT/FT

VELOCITY = 2.3 FT/SEC

CRITICAL SLOPE, FT/FT = .0048

CRITICAL DEPTH, FEET = 1.11

CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .008

ENERGY LOSS, FEET = .008

INLET CONDITIONS:

ENERGY GRADE = 50.755 HYDRAULIC GRADE = 50.669

A473

45 TURN IN 30" PIPE
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 2.50 FEET
INVERT ELEV. = 47.790 FEET
SIDEWALL = 2.50 FEET
LOSS COEFFICIENT "K" = .20

FULL FLOW IN RECTANGULAR CONDUIT

VELOCITY = 1.84 FT/SEC

ENERGY LOSS, FEET = .010

ENERGY GRADE = 50.765

HYDRAULIC GRADE = 50.713

A477

30" PIPE BETWEEN PRIM CLR AND AERATION BASIN ROUND CONDUIT

DIAMETER = 30.00 INCHES
LENGTH= 15.00 FEET
MANNING ROUGHNESS = .0130
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00
INVERT ELEV AT OUTLET = 47.790

SUBCRITICAL FLOW
CONDUIT OUTLET SUBMERGED
FULL CONDUIT FLOW THROUGHOUT LENGTH
FRICTION FACTOR = .00078 FT/FT
VELOCITY = 2.3 FT/SEC
CRITICAL SLOPE, FT/FT = .0048
CRITICAL DEPTH, FEET = 1.11
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .012
ENERGY LOSS, FEET = .012

INLET CONDITIONS:

ENERGY GRADE = 50.777 HYDRAULIC GRADE = 50.692

A480

30" PIPE ENTRANCE AFTER PRIM CLR "K" LOSS IN RECTANGULAR CONDUIT WIDTH = 2.50 FEET INVERT ELEV. = 47.790 FEET SIDEWALL = 2.50 FEET LOSS COEFFICIENT "K" = .50

FULL FLOW IN RECTANGULAR CONDUIT VELOCITY = 1.84 FT/SEC ENERGY LOSS, FEET = .026 ENERGY GRADE = 50.803 HYDRAULIC GRADE = 50.751

A490

DROP BOX AFTER PRIM CLR RECTANGULAR CONDUIT

HEIGHT = 7.00 FEET WIDTH = 5.00 FEET LENGTH= . 2.50 FEET MANNING ROUGHNESS = .0130 SLOPE = .00000 FEET/FOOT NUMBER OF ANALYSIS SECTIONS = 20.00 INVERT ELEV AT OUTLET = 47.790

SUBCRITICAL FLOW

				AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION	4.00	
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT.	FEET.	GRADE	GRADE
			* .		•		
.000	3.004	.765	.00003	·		50.794	50.803
.125	3.004	.765	.00003	.00003	.000	50.794	50.803
.250	3.004	.765	.00003	.00003	.000	50.794	50.803
.375	3.004	.765	.00003	.00003	.000	50.794	50.803
.500	3.004	.765	.00003	.00003	.000	50.794	50.803
.625	3.004	.765	.00003	.00003	.000	50.794	50.803
.750	3.004	.765	.00003	.00003	.000	50.794	50.803
.875	3.004	.765	.00003	.00003	.000	50.794	50.803
1.000	3.004	.765	.00003	.00003	.000	50.794	50.803
1.125	3.004	.765	.00003	.00003	.000	50.794	50.803
1.250	3.004	.765	.00003	.00003	.000	50.794	50.803
1.375	3.004	.765	.00003	.00003	.000	50.794	50.803
1.500	3.004	.765	.00003	.00003	.000	50.794	50.803
1.625	3.004	.765	.00003	.00003	.000	50.794	50.803
1.750	3.004	.765	:00003	.00003	.000	50.794	50.803
1.875	3.004	.765	.00003	.00003	.000	50.794	50.803
2.000	3.004	.7.65	.00003	.00003	.000	50.794	50.803
2.125	3.004	.765	.00003	.00003	.000	50.794	50.803
2.250	3.004	.765	.00003	.00003	.000	50.794	50.803
2.375	3.004	.765	.00003	.00003	.000	50.794	50.803
2.500	3.004	.765	.00003	.00003	.000	50.794	50.803

CRITICAL SLOPE, FT/FT = .0039
CRITICAL DEPTH, FEET = .55
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 50.803 HYDRAULIC GRADE = 50.794

A500 EFFLUENT LAUNDER IN PRIMARY CLR

RECTANGULAR LAUNDER

UPSTREAM WIDTH = 2.50 FEET

DOWNSTREAM WIDTH = 2.50 FEET

LAUNDER SIDEWALL HEIGHT = 2.00 FEET

LENGTH = 186.92 FEET

MANNINGS ROUGHNESS = .0130FEET

SLOPE = .00000 FEET/FOOT

INVERT ELEV AT OUTLET = 51.300

DISCHARGE AT OUTLET = 3.71 MGD

FREE FALL OUTLET CONDITION

	DELTA			. I	MENTU	M .	DELTA		* • *
	DEPTH	WATER	FLOW '	VELOCITY	DELTA	FRICTION	DEPTH	HYDRAULIC	ENERGY
STATION	ASSUMED	DEPTH	CFS	FT/SEC	DEPTH	LOSS	CALC	GRADE	GRADE
.00		.394	5.74		•			51.694	52.121
9.35	.491	.886	5.46	2.46	.46	0 .066			52.280
18.69	.019	.905	5.17	2,28	.02		.032	the state of the s	52.286
28.04	.018	.923	4.88	2.12	.02	0 .008	.028	52.223	52,292
37.38	.016	.938	4.60	1.96	.01	8 .007	.025	52.238	52.298
4.6.73	.014	.953	4.31	1.81	.01	6 .006	.022	52.253	52.304
56.08	.013	.966	4.02	1.66	.01	4 .005	.019	52.266	52.309
65.42	.012	.978	3.73	1.53	.01	3 .004	.017	52.278	52.314
74.77	011	.989	3.45	1.39	.01	1 .003	.015	52.289	52.319
84.11	.010	.998	3.16	1.27	.01	0 .003	.013	52,298	52.323
93.46	.009	1.007	2.87	1.14	.00	9 .002	.011	. 52.307	52.327
102.81	.008	1.015	2.58	1.02	.00	8 .002	.010	52.315	52.331
112.15	.007	1.021	2.30	.90	.00	7 .001	.008	52.321	52.334
121.50	.006	1.027	2.01	.78	.00	6 .001	.007	52.327	52.337
130.84	.005	1.032	1.72	. 67	.00	5 .001	.006	52.332	52.339
140.19	.004	1.036	1.44	.55	.00	4 .001	.005	52.336	52.341
149.54	.003	1.040	1.15	.44	.00	3 .000	.004	52.340	52.343
158.88	.003	1.043	.86	.33	.00	.000	.003	52.343	52.344
168.23	.002	1.044	.57	The second secon		2 .000	.002	52.344	52.345
177.57	.001	1.046	.29				.001	52.346	52.346
186.92	.000	1.046	.00			•		52.346	52.346

CRITICAL DEPTH, FEET = .55
WATER DEPTH AT UPSTREAM END OF LAUNDER = 1.05
CHANGE IN HYDRAULIC GRADE WITHIN LAUNDER = .652
ENERGY LOSS, FEET = 1.543

A510

WEIR PLATE IN PRIMARY CLR

V-NOTCH WEIR PLATE

WEIR: DISCHARGE = 11.49 CFS

LENGTH = 747.69 FEET

TOP OF PLATE ELEV = 54.000

V-NOTCH: SPACING = 6.00 INCHES

ANGLE = 90.00 DEGREES

DEPTH = 2.00 INCHES INVERT = 53.833

WS ELEV DOWNSTREAM OF WEIR = 52.346

FREEBOARD = 1.487

ENERGY LOSS, FEET = 1.586

ENERGY GRADE = 53.932

HYDRAULIC GRADE = 53.932

A520

ENTRANCE IN PRIM CLR

SUBMERGED ROUND ORIFICE

NO OF ORIFICES = 1

ORIFICE DIAMETER = 30.00 INCHES

DISCHARGE COEFFICIENT = 1.00

FLOW PER ORIFICE = 11.49 CFS

VELOCITY THROUGH ORIFICE, FPS = 2.34

ENERGY LOSS, FEET = .085

ENERGY GRADE = 54.017 HYDRAULIC GRADE = 54.017

A540

30" ELBOW UNDER PRIM CLR

"K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = .600

PIPE DIAMETER = 30.00 INCHES INVERT ELEVATION = 32.000

VELOCITY = 2.34 FT/SEC

ENERGY LOSS, FEET = .051

ENERGY GRADE = 54.068 HYDRAULIC GRADE = 53.983

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A550

30" PIPE FROM PRIM DIST BOX #1 TO PRIM CLR

DARCY-WEISBACH FRICTION

PIPE DIAMETER = 30.0000INCHES

ROUGHNESS = .0060 FEET

LENGTH = 10.0000 FEET

VELOCITY, FPS = 2.34

REYNOLDS NUMBER = 480760.

DARCY-WEISBACH FRICTION FACTOR = .0254

EQUIVALENT HAZEN WILLIAMS C = 108.
EQUIVALENT MANNING COEFFICIENT = .0137
ENERGY LOSS, FEET = .009
ENERGY GRADE = 54.077
HYDRAULIC GRADE = 53.992

A552

45 TURN IN 30" PIPE
"K"LOSS IN FULL ROUND PIPE
LOSS COEFFICIENT K = .800
PIPE DIAMETER = 30.00 INCHES
INVERT ELEVATION = 49.000

VELOCITY = 2.34 FT/SEC ENERGY LOSS, FEET = .068 ENERGY GRADE = 54.145 HYDRAULIC GRADE = 54.060

A556

30" PIPE BETWEEN DISTR BOX AND PRIM CLR DARCY-WEISBACH FRICTION

PIPE DIAMETER = 30.0000INCHES
ROUGHNESS = .0060 FEET
LENGTH = 75.0000 FEET

VELOCITY, FPS = 2.34
REYNOLDS NUMBER = 480760.
DARCY-WEISBACH FRICTION FACTOR = .0254
EQUIVALENT HAZEN WILLIAMS C = 108.
EQUIVALENT MANNING COEFFICIENT = .0137
ENERGY LOSS, FEET = .065
ENERGY GRADE = 54.210
HYDRAULIC GRADE = 54.125

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A560

30" PIPE EXIT FROM DIST BOX #1
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 2.50 FEET
INVERT ELEV. = 49.000 FEET
SIDEWALL = 2.50 FEET
LOSS COEFFICIENT "K" = 1.00

FULL FLOW IN RECTANGULAR CONDUIT

VELOCITY = 1.84 FT/SEC

ENERGY LOSS, FEET = .052

ENERGY GRADE = 54.262

HYDRAULIC GRADE = 54.210

A565
CHANNEL AFTER WEIR IN DIST BOX #1
RECTANGULAR CONDUIT
HEIGHT = 12.50 FEET
WIDTH = 5.00 FEET
LENGTH= 5.00 FEET

MANNING ROUGHNESS = .0130 SLOPE = .00000 FEET/FOOT NUMBER OF ANALYSIS SECTIONS = 20.00 INVERT ELEV AT OUTLET = 49.000

SUBCRITICAL FLOW

				AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION	•	
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	5.259	.437	.00001		٠.	54.259	54.262
.250	5.259	.437	.00001	.00001	.000	54.259	54.262
.500	5.259	.437	.00001	.00001	.000	54.259	54.262
.750	5.259	.437	.00001	.00001	.000	54.259	54.262
1.000	5.259	.437	.00001	.00001	.000	54.259	54.262
1.250	5.259	.437	.00001	.00001	.000	54.259	54.262
1.500	5.259	.437	.00001	.00001	.000	54.259	54.262
1.750	5.259	.437	.00001	.00001	.000	54.259	54.262
2.000	5.259	.437	.00001	.00001	.000	54.259	54.262
2.250	5.259	.437	.00001	.00001	.000	54.259	54.262
2.500	5.259	.437	.00001	.00001	.000	54.259	54.262
2.750	5.259	.437	00001	.00001	.000	54.259	54.262
3.000	5.259	.437	.00001	.00001	.000	54.259	54.262
3.250	5.259	.437	.00001	.00001	.000	54.259	54.262
3.500	5.259	.437	.00001	.00001	.000	54.259	54.262
3.750	5.259	.437	.00001	.00001	.000	54.259	54.262
4.000	5.259	.437	.00001	.00001	.000	54.259	54.262
4.250	5.259	. 437	.00001	.00001	.000	54.259	54.262
4.500	5.259	.437	.00001	.00001	.000	54.259	54.262
4.750	5.259	.437	.00001	.00001	.000	54.259	54.262
5.000	5.259	.437	.00001	.00001	.000	54.259	54.262

CRITICAL SLOPE, FT/FT = .0039CRITICAL DEPTH, FEET = .55 CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000 ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 54.262 HYDRAULIC GRADE = 54.259 ENERGY GRADE =

A570

WEIR IN DIST BOX #1

SHARP-CRESTED WEIR WEIR CREST ELEVATION = 56.750

WEIR DISCHARGE = 11.49 CFS

LENGTH = 12.00 FEET

NO END CONTRACTIONS FREEBOARD = 2.491CALCULATED C VALUE = 3.332 HEIGHT OF WATER OVER WEIR = .435 ENERGY LOSS, FEET = 2.923

ENERGY GRADE = 57.185 HYDRAULIC GRADE = 57.185

BROWN AND CALDWELL

PROFILE

SERIAL NO. 9901

Consulting Engineers

Version 2.00

F70

FULL FLOW THROUGH EAST SIDE

FLOW PERCENT

FLOW = 22.98 CFS OR

14.85 MGD

66.00 PERCENT OF TOTAL PLANT FLOW.

A580

FIRST CHANNEL IN DIST BOX #1

RECTANGULAR CONDUIT

HEIGHT = 11.92 FEET

WIDTH = 16.00 FEET

LENGTH= 16.00 FEET

MANNING ROUGHNESS = .0130

SLOPE = ...00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 47.330

SUBCRITICAL FLOW

				AVERAGE			•
	WATER	•	FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	9.855	.146	.00000	•		57.185	57.185
800	9.855	.146	.00000	.00000	.000	57.185	57.185
1.600	9.855	.146	.00000	.00000	.000	57.185	57.185
2.400	9.855	.146	.00000	.00000	.000	57.185	57.185
3.200	9.855	.146	.00000	.00000	.000	57.185	57,185
4.000	9.855	.146	.00000	.00000	.000	57.185	57.185
4.800	9.855	.146	.00000	.00000	.000	57.185	57.185
5.600	9.855	.146	.00000	.00000	.000	57.185	57.185
6.400	9.855	.146	.00000	.00000	.000	57.185	57.185
7.200	9.855	.146	.00000	.00000	.000	57.185	57.185
8.000	9.855	.146	.00000	.00000	.000	57.185	57.185
8.800	9.855	.146	.00000	.00000	.000	57.185	57.185
9.600	9.855	.146	.00000	.00000	.000	57.185	57.185
10.400	9.855	.146	.00000	.00000	.000	57.185	57.185
11.200	9.855	.146	.00000	.00000	.000	57.185	57.185
12.000	9.855	.146	.00000	.00000	.000	57.185	57.185
12.800	9.855	.146	.00000	.00000	.000	57.185	57.185
13.600	9.855	.146	.00000	.00000	.000	57.185	57.185
14.400	9.855	.146	.00000	.00000	.000	57.185	57.185
15.200	9.855	.146	.00000	.00000	.000	57.185	57.185
16.000	9.855	.146	00000	.00000	.000	57.185	57.185

CRITICAL SLOPE, FT/FT = .0036 CRITICAL DEPTH, FEET = .40 CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000 ENERGY LOSS, FEET = .000INLET CONDITIONS: LET CONDITIONS: ENERGY GRADE = 57.185 HYDRAULIC GRADE = 57.185

A585

48" PIPE EXIT INTO DIST BOX #1 "K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 2.500

PIPE DIAMETER = 48.00 INCHES INVERT ELEVATION = 47.330

VELOCITY = 1.83 FT/SEC ENERGY LOSS, FEET = .130 ENERGY GRADE = 57.315 HYDRAULIC GRADE = 57.263

BROWN AND CALDWELL PROFILE
Consulting Engineers Version 2.00 SERIAL NO. 9901

A590

48" PIPE FROM AERATED GRIT CHAM TO DIST BOX #1 DARCY-WEISBACH FRICTION

PIPE DIAMETER = 48.0000INCHES ROUGHNESS = .0100 FEET

LENGTH = 1470.0000 FEET

VELOCITY, FPS = 1.83 REYNOLDS NUMBER = 600950. DARCY-WEISBACH FRICTION FACTOR = .0256 EQUIVALENT HAZEN WILLIAMS C = 105. EQUIVALENT MANNING COEFFICIENT = .0148 ENERGY LOSS, FEET = .489 ENERGY GRADE = 57.804 HYDRAULIC GRADE = 57.752

A595

ALL TURNS IN 48" BETWEEN GRIT CHAM AND DISTR BOX "K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 8.000

PIPE DIAMETER = 48.00 INCHES INVERT ELEVATION = 47.330

VELOCITY = 1.83 FT/SEC ENERGY LOSS, FEET = .415 ENERGY GRADE = 58.220 HYDRAULIC GRADE = 58.168

A600

48" PIPE ENTRANCE AFTER AERATED GRIT CHAM "K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 1.800

48.00 INCHES PIPE DIAMETER = 48.00 INVERT ELEVATION = 45.250

VELOCITY = 1.83 FT/SEC

ENERGY LOSS, FEET = .093 ENERGY GRADE = 58.313 HYDRAULIC GRADE = 58.261

BROWN AND CALDWELL

PROFILE

SERIAL NO. 9901

Consulting Engineers

Version 2.00

A610

FINAL CHAN IN AERATED GRIT CHAM RECTANGULAR CONDUIT

+ HEIGHT = 15.75 FEET

WIDTH = 10.00 FEET

34.00 FEET LENGTH=

MANNING ROUGHNESS = .0450

SLOPE = .00000 FEET/FOOT

NUMBER OF ANALYSIS SECTIONS = 20.00

INVERT ELEV AT OUTLET = 44.200

SUBCRITICAL FLOW

'	•			AVERAGE			
•	WATER		FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	14.113	.163	.00000	÷	•	58.313	58.313
1.700	14.113	.163	.00000	.00000	.000	58.313	58.313
3.400	14.113	.163	.00000	.00000	.000	58.313	58.313
5.100	14.113	.163	.00000	.00000	:000	58.313	58.313
6.800	14.113	.163	.00000	.00000	.000	58.313	58.313
8.500	14.113	.163	.00000	.00000	.000	58.313	58.313
10.200	14.113	.163	.00000	.00000	.000	58.313	58.313
11.900	14.113	.163	.00000	.00000	.000	58.313	58.313
13.600	14.113	.163	.00000	.00000	.000	58.313	58.313
15.300	14.113	.163	.00000	.00000	.000	58.313	58.313
17.000	14.113	.163	.00000	.00000	.000	58.313	58.313
18.700	14.113	.163	.00000	.00000	.000	58.313	58.313
20.400	14.113	.163	.00000	.00000	.000	58.313	58.313
22.100	14.113	.163	.00000	.00000	.000	58.313	58.313
23.800	14.113	.163	.00000	.00000	.000	58.313	58.313
25.500	14.113	.163	.00000	.00000	.000	58.313	58.313
27.200	14.113	.163	.00000	.00000	.000	58.313	58.313
28.900	14.113	.163	.00000	.00000	.000	58.313	58.313
30.600	14.113	.163	.00000	.00000	.000	58.313	58.313
32.300	14.113	.163	.00000	.00000	.000	58.313	58.313
34.000	14.113	.163	.00000	.00000	.000	58.313	58.313

CRITICAL SLOPE, FT/FT = .0414 CRITICAL DEPTH, FEET = .55 CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000 ENERGY LOSS, FEET = .000

INLET CONDITIONS:

58.313 ENERGY GRADE = HYDRAULIC GRADE = 58.313

F80

1/3 FLOW THROUGH EASTSIDE

FLOW PERCENT

FLOW = 7.66 CFS OR 4.95 MGD 22.00 PERCENT OF TOTAL PLANT FLOW.

A620

90 TURN IN AERATED GRIT CHAM
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 17.00 FEET
INVERT ELEV. = 45.250 FEET
SIDEWALL = 17.30 FEET
LOSS COEFFICIENT "K" = .40

VELOCITY = .03 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 58.313 HYDRAULIC GRADE = 58.313

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A640
WEIR AFTER AERATED GRIT CHAM
SHARP-CRESTED WEIR
WEIR CREST ELEVATION = 58.750
WEIR DISCHARGE = 7.66 CFS
LENGTH = 2.50 FEET

NO END CONTRACTIONS
FREEBOARD = .437

CALCULATED C VALUE = 3.334

HEIGHT OF WATER OVER WEIR = .945
ENERGY LOSS, FEET = 1.382
ENERGY GRADE = 59.695

HYDRAULIC GRADE = 59.695

A650 CHANNEL IN AERATED GRIT TANK RECTANGULAR CONDUIT

HEIGHT = 17.30 FEET
WIDTH = 17.00 FEET
LENGTH= 54.00 FEET
MANNING ROUGHNESS = .0200
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00
INVERT ELEV AT OUTLET = 44.200

SUBCRITICAL FLOW

AVERAGE
WATER FRICTION FRICTION
STATION DEPTH VELOCITY FACTOR FACTOR LOSS HYDRAULIC ENERGY
FEET FEET FT/SEC FT/FOOT FT/FOOT FEET GRADE GRADE

.000	15.495	.029	.00000	•		59.695	59.695
2.700	15.495	.029	.00000	.00000	.000	59.695	59.695
5.400	15.495	.029	.00000	.00000	.000	59.695	59.695
8.100	15.495	.029	.00000	.00000	.000	59.695	59.695
10.800	15.495	.029	.00000	.00000	.000	59.695	59.695
13.500	15.495	.029	.00000	.00000	.000	59.695	59.695
16.200	15.495	.029	.00000	.00000	.000	59.695	59.695
18.900	15.495	.029	.00000	.00000	.000	59.695	59.695
21.600	15.495	.029	.00000	.00000	.000	59.695	59.695
24.300	15.495	.029	.00000	.00000	.000	59.695	59.695
27.000	15.495	.029	.00000	.00000	.000	59.695	59.695
29.700	15.495	.029	.00000	.00000	.000	59.695	59.695
32.400	15.495	.029	.00000	.00000	.000	59.695	59.695
35.100	15.495	.029	.00000	.00000	.000	59.695	59.695
37.800	15.495	.029	.00000	.00000	.000	59.695	59.695
40.500	15.495	.029	.00000	.00000	.000	59.695	59.695
43.200	15.495	.029	.00000	.00000	.000	59.695	59.695
45.900	15.495	.029	.00000	.00000	.000	59.695	59.695
48.600	15.495	.029	.00000	.00000	.000	59.695	59.695
51.300	15.495	.029	.00000	.00000	.000	59.695	59.695
54.000	15.495	.029	.00000	.00000	.000	59.695	59.695
1							

CRITICAL SLOPE, FT/FT = .0105 CRITICAL DEPTH, FEET = .19 CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000 ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 59.695 HYDRAULIC GRADE = 59.695

A670

36" PIPE ENTRANCE TO AERATED GRIT CHAM "K"LOSS IN FULL ROUND PIPE

LOSS COEFFICIENT K = 1.000

PIPE DIAMETER = 36.00 INCHES

INVERT ELEVATION = 51.000

VELOCITY = 1.08 FT/SEC ENERGY LOSS, FEET = .018

ENERGY GRADE = 59.713

HYDRAULIC GRADE = 59.695

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

7 690

36" PIPE IN AERATED GRIT TANK

DARCY-WEISBACH FRICTION

PIPE DIAMETER = 36.0000INCHES

ROUGHNESS = .0025 FEET

LENGTH = 72.0000 FEET

VELOCITY, FPS = 1.08 REYNOLDS NUMBER = 267089.

DARCY-WEISBACH FRICTION FACTOR = .0

127. EQUIVALENT HAZEN WILLIAMS C = EOUIVALENT MANNING COEFFICIENT = .0126 ENERGY LOSS, FEET = .009 ENERGY GRADE = 59.722 HYDRAULIC GRADE = 59.704

A690

2 45 TURNS IN 36" PIPE "K"LOSS IN FULL ROUND PIPE LOSS COEFFICIENT K = .400 PIPE DIAMETER = 36.00 INVERT ELEVATION = 51.000 36.00 INCHES

> VELOCITY = 1.08 FT/SEC ENERGY LOSS, FEET = .007 ENERGY GRADE = 59.730HYDRAULIC GRADE = 59.711

A700

36" PIPE ENTRANCE IN AERATED GRIT CHAM "K"LOSS IN FULL ROUND PIPE LOSS COEFFICIENT K = .500

PIPE DIAMETER = 36.00 INCHES
INVERT ELEVATION = 51.500

VELOCITY = 1.08 FT/SEC ENERGY LOSS, FEET = .009 ENERGY GRADE = 59.739 HYDRAULIC GRADE = 59.721

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A705

WEIR IN BEGIN OF AERATED GRIT TANK SHARP-CRESTED WEIR WEIR CREST ELEVATION = 60.500 WEIR DISCHARGE = 7.66 CFS LENGTH = 3.00 FEET

NO END CONTRACTIONS FREEBOARD = .779CALCULATED C VALUE = 3.336 HEIGHT OF WATER OVER WEIR = .837 ENERGY LOSS, FEET = 1.598 ENERGY GRADE = 61.337 HYDRAULIC GRADE = 61.337

F100 FULL FLOW FLOW PERCENT

FLOW = 22.98 CFS OR 14.85 MGD 66.00 PERCENT OF TOTAL PLANT FLOW.

A720 CHAMBER IN AERATED GRIT CHAM RECTANGULAR CONDUIT

HEIGHT = 10.00 FEET
WIDTH = 10.00 FEET
LENGTH= 5.00 FEET
MANNING ROUGHNESS = .0130
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00
INVERT ELEV AT OUTLET = 51.500

SUBCRITICAL FLOW

	100			AVERAGE			
400	WATER		FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	9.836	.234	.00000			61.336	61.337
.250	9.836	.234	.00000	.00000	.000	61.336	61.337
.500	9.836	. 234	.00000	.00000	.000	61.336	61.337
.750	9, 836	.234	.00000	.00000	.000	61.336	61.337
1.000	9.836	.234	.00000	.00000	.000	61.336	61.337
1.250	9.836	.234	.00000	.00000	.000	61.336	61.337
1.500	9.836	.234	.00000	.00000	.000	61.336	61.337
1.750	9.836	.234	.00000	.00000	.000	61.336	61.337
2.000	9.836	.234	.00000	.00000	.000	61.336	61,337
2.250	9.836	.234	.00000	.00000	.000	61.336	61.337
2.500	9.836	.234	.00000	.00000	.000	61.336	61.337
2.750	9.836	.234	.00000	.00000	.000	61.336	61.337
3.000	9.836	.234	.00000	.00000	.000	61.336	61.337
3.250	9.836	.234	.00000	.00000	.000	61.336	61.337
3.500	9.836	.234	.00000	.00000	.000	61.336	61.337
3.750	9.836	.234	.00000	.00000	.000	61.336	61.337
4.000	9.836	.234	.00000	.00000	.000	61.336	61.337
4.250	9.836	.234	.00000	.00000	.000	61.336	61.337
4.500	9.836	.234	.00000	.00000	.000	61.336	61.337
4.750	9.836	.234	.00000	.00000	.000	61.336	61.337
5.000	9.836	.234	.00000	.00000	.000	61.336	61.337

CRITICAL SLOPE, FT/FT = .0035
CRITICAL DEPTH, FEET = .55
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 61.337 HYDRAULIC GRADE = 61.336

BROWN AND CALDWELL PROFILE SERIAL NO. 9901 Consulting Engineers Version 2.00

A725

4.5 FT CHAN OPENING

"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 4.50 FEET
INVERT ELEV. = 51.500 FEET
SIDEWALL = 9.75 FEET

FULL FLOW IN RECTANGULAR CONDUIT

VELOCITY = .52 FT/SEC

ENERGY LOSS, FEET = .004

ENERGY GRADE = 61.341

HYDRAULIC GRADE = 61.337

A730
90 TURN IN AERATED GRIT CHAM
"K" LOSS IN RECTANGULAR CONDUIT
WIDTH = 10.00 FEET
INVERT ELEV. = 51.500 FEET
SIDEWALL = 10.00 FEET
LOSS COEFFICIENT "K" = .30

VELOCITY = .23 FT/SEC ENERGY LOSS, FEET = .000 ENERGY GRADE = 61.341 HYDRAULIC GRADE = 61.340

A740
FIRST CHANNEL IN GRIT CHAM
RECTANGULAR CONDUIT
HEIGHT = 9.75 FEET
WIDTH = 16.00 FEET
LENGTH= 8.00 FEET
MANNING ROUGHNESS = .0130
SLOPE = .00000 FEET/FOOT
NUMBER OF ANALYSIS SECTIONS = 20.00
INVERT ELEV AT OUTLET = 51.750

SUBCRITICAL FLOW

		•		AVERAGE			
	WATER		FRICTION	FRICTION	FRICTION		
STATION	DEPTH	VELOCITY	FACTOR	FACTOR	LOSS	HYDRAULIC	ENERGY
FEET	FEET	FT/SEC	FT/FOOT	FT/FOOT	FEET	GRADE	GRADE
.000	9.591	.150	.00000		÷	61.341	61.341
.400	9.591	.150	.00000	.00000	.000	61.341	61.341
.800	9.591	.150	.00000	.00000	.000	61.341	61.341
1.200	9.591	.150	.00000	.00000	.000	61.341	61.341
1.600	9.591	.150	.00000	.00000	.000	61.341	61.341
2.000	9.591	.150	.00000	.00000	.000	61.341	61.341
2.400	9.591	.150	.00000	.00000	.000	61.341	61.341
2.800	9.591	.150	.00000	.00000	.000	61.341	61.341
3.200	9.591	.150	.00000	.00000	.000	61.341	61.341
3.600	9.591	.150	.00000	.00000	.000	61.341	61.341
4.000	9.591	.150	.00000	.00000	.000	61.341	61.341
4.400	9.591	.150	.00000	.00000	.000	61.341	61.341
4.800	9.591	.150	.00000	.00000	.000	61.341	61.341
5.200	9.591	.150	.00000	.00000	.000	61.341	61.341
5.600	9.591	.150	.00000	.00000	.000	61.341	61.341
6.000	9.591		.00000	.00000	.000	61.341	61.341
6.400	9.591	.150	.00000	.00000	.000	61.341	61.341

6.800	9.591	.150	.00000	.00000	.000	61.341	61.341
7.200	9.591	.150	.00000	.00000	.000	61.341	61.341
7.600	9.591	.150	.00000	.00000	.000	61.341	61.341
8.000	9.591	.150	.00000	.00000	.000	61.341	61.341

CRITICAL SLOPE, FT/FT = .0036
CRITICAL DEPTH, FEET = .40
CHANGE IN HYDRAULIC GRADE WITHIN CONDUIT, FEET = .000
ENERGY LOSS, FEET = .000

INLET CONDITIONS:

ENERGY GRADE = 61.341 HYDRAULIC GRADE = 61.341

THERESA STREET WWTP EAST SIDE 1971 LINCOLN MARK RICHARDS 8/13/01 22.50 44.77 44.77 F10 FULL FLOW THROUGH PLANT 100.00, 0.00, A10 OUTFALL AT SALT CREEK 48.00, 1, 24.50, 0.00. A20 48" PIPE FROM JB TO OUTFALL 48.00, 0.0025, 100.00, 0.00. A30 -EXIT FROM JB 48.00, 0.5, 30.00, 0.00, A40 JUNCTION BOX BEFORE CREEK 20.00, 6.00, 30.00, 1.00, 16.00, 4.00, 0.013, F15 FULL FLOW FROM BOTH TRAINS 100.00, 0.00, A50 ENTRANCE INTO JB 48.00, 2.2, 37.00, 0.00, A60 48" PIPE FROM CHL TANK TO JB 48.00, 0.0055, 15.00, 0.00, A63

48.00, 0.55, 37.00, 0.00,

90 TURN IN PIPE

\ \		BETWEEN CHL	AND JB			•	
2	4 48	.00, 0	.0055,	20.00,	0.00,		
		FROM CHL TA	NK				
	5 48	.00,	1.5,	37.00,	0.00,		
		NNEL IN CHL					
	20 37.00,	1.00,	25.00,	9.60,	7.00,	0.013,	0,
	F20 1/2 TOTAL 2	FLOW THROU	GH CHL TANK				
).00,	0.00,	•			
		SETED WEIR	IN CHR TANK			· ·	
	. 5	5.00,	45.33,	0.00,	36.00,	0.00,	
	A90 4TH PASS 12	IN CHL TANK	(·
)	20	0.00,	50.00,	10.60,	10.00,	0.013,	0,
	A100 180 TURN 16	IN CHL TANK	·				
		0.6,	10.00,	36.00,	1.00,	10.60,	0.00,
	A110 3RD PASS 12	IN CHL TANF	ζ.				
		0.00,	50.00,	10.60,	29.50,	0.013,	0,
	A120 180 TURN 16	IN CHL TAN	ζ			er e	
	. 10	0.6,	29.50,	36.00,	0.00,	10.60,	0.00,
	A130 2ND PASS	IN CHL TAN	Κ				
		0.00,		10.60,	29.50,	0.013,	0,
		IN CHL TAN	K	•			
9	16	0.6,	29.50,	36.00,	1.00,	10.60,	0.00,

	12	ANK				
	20.00,	50.00,	10.60,	29.50,	0.013,	0,
	A155 90 TURN IN CHL 16					
•		29.50,	36.00,	0.00,	10.60,	0.00,
٠	A170 SUB ORIFICE IN CHI 18	L TANK (?)				
	1.00,	4.00,	4.00,	0.47,	0.00,	
	F30 FULL FLOW IN CHL 7	TANK				
	100.00,	0,00,				•
	A180 FIRST CHANNEL IN 0	CHL TANK				
			15.50,	8.00,	0.013,	0,
	A185 60" ENTRANCE INTO	CHL TANK				
	5 60.00,	3,	31.00,	0.00,		
	A190 60" PIPE BETWEEN I	DIST BOX AND	CHL TANK			
		0.006,	55.00,	0.00,		
	A200 60" PIPE EXIT FROM	M DIST BOX		•		
	60.00,	2.3,	31.00,	0.00,		
	F30 FULL FLOW WITH 19 2	65 TRAIN				
	100.00,	0.00,	•			
	A210 DIST BOX #2 12					
	20.00,		27.00,	8.00,	0.02,	0
	F40 1/2 FLOW THROUGH 2	PRC TRAIN 19	71			

```
33.00, 0.00,
A230
30" ENTRANCE INTO DISTR BOX #2
    30.00, 0.5, 41.79, 0.00,
A240
30" PIPE FROM FINAL BASIN TO DISTR BOX#2
    30.00, 0.002, 25.00,
                                   0.00,
30" PIPE ENTRANCE AFTER FINAL CLR
    30.00, 0.2, 41.79, 0.00,
A255
DROP BOX AFTER FINAL CLR
20.00, 3.00,
42.03, 1.00,
                       7.47, 7.00,
                                             0.01,
A260
COLLECTION LAUNDER IN FINAL CHL
    30.00, 194.80, 2.50, 2.50,
45.80, 0.50, 0.00, 1.00
                                          2.00, 0.01,
    45.80,
                                    1.00,
A270
WEIR PLATE IN FINAL CHL
   389.56, 6.00, 90.00, 48.00,
                                             2.00, 1.00,
1/2 FLOW WITH 1/2 RAS
    50.00, 0.00,
A280
30" PIPE OPENING
               1, 28.92, 0.00,
30.00,
A300
90 DEGREE ELBOW UNDER FINAL CHL
           0.6, 28.92, 0.00,
    30.00,
A302
30" PIPE FROM AERATION BASIN TO FINAL CLR
     30.00, 0.0042, 80.00,
                                    0.00.
A310
30" ENTRANCE AFTER AERATION BASIN
```

0.

	30	0.00,	0.5,	3	31.51,		0.00,			
		OUOR CH IN A	AERATION I	BASIN						
		1.00,	56.00,	2	14.50,		3.00,).013,	0,
		IN AERATION	1	÷						
	16	0.6,	44.00,	. 4	17.79,		0.00,		24.50,	0.00,
	A340 WEIR #4 I	IN AERATION								
		0.00,	50.00,		0.00,	3	1.50,		0.00,	
	A350 ZONE #4 1	IN AEARION	BASIN							
	20	0.00,	92.00,	,	24.50,	4	14.00,		0.013,	0,
	A360 180 TUNE 16	IN AEARATI	ON BASIN	٠.						·
	0	0.6,	44.00,		31.50,	٠	0.00,	;	24.50,	0.00,
	A370 WEIR #3 :	IN AEARATIO	N BASIN							
		0.00,	49.83,	.*	0.00,	3	31.50,		0.00,	
•	A380 ZONE 3 I	N AEARION B	ASIN			•			•	
	31.50,	0.00, 1.00,			24.50,	2	23.00,		0.013,	 0,
	A390 180 TURN 16	IN AERATIO	N BASIN							
	10	0.6,	23.00,		31.50,		0.00,		24.50,	0.00,
	A400 WEIR #2 3	IN AEARATIC	N BASIN						•	
		0.00,	50.18,		0.00,		31.50,		0.00,	
	12	IN AEARATIC								
	31.50,	0.00,			24.50,		24.00,		0.013,	0,
	A420									

 F							
				• .			
		I IN AEATION	BASIN				
	16	0.6,	23.00,	31.50,	0.00,	24.50,	0.00,
	A430 WEIR #1	IN AEARATION	N BASIN			* *	
	3	20.00,	48.00,	0.00,	31.50,	0.00,	
		N AEARATION	BASIN				
	12 47.79,	20.00,	42.00,	24.50,	8.00,	0.013,	0,
* *.		DW WITH NO RA	AS NO RECYCLE	·			
	2	33.00,	0.00,				
		E ENTRANCE					
	5	30.00,	1,	47.79,	0.00,		
		E BETWEEN PR	IM BASIN AND	AERATION BAS	IN		
	12 47.79,	20.00,	10.00,	30.00,	0.00,	0.013,	0,
·		IN 30" PIPE					
	16	0.2,	2.50,	47.79,	0.00,	2.50,	0.00,
		E BETWEEN PR	IM CLR AND AE	RATION BASIN	ı		
		20.00,	15.00,	30.00,	0.00,	0.013,	0,
		E ENTRANCE A	FTER PRIM CLR	t .			
	16	0.5,	2.50,	47.79,	0.00;	2.50,	0.00,
		K AFTER PRIM	CLR		:		
	12 47.79,	20.00,	2.50,	7.00,	5.00,	0.013,	0,
	A500 EFFLUEN'	I LAUNDER IN	PRIMARY CLR				
	,						

	20.00, 0, 51.3	186.92, 0, 0.50,	2.50,	2.50, 1.00,	2.00,	0.013,
	A510 . WEIR PLATE IN	PRIMARY CLR				
		6.00,	90.00,	54.00,	2.00,	1.00,
	A520 ENTRANCE IN P	RIM CLR				
		30.00,	0.00,	1,	0.00,	
	A540 30" ELBOW UND	ER PRIM CLR				
		0.6,	32.00,	0.00,		
	A550 30" PIPE FROM	PRIM DIST BOX	#1 TO PRIM CLR			
		0.006,	10.00,	0.00,		
	A552 45 TURN IN 30 5	" PIPE				
		0.8,	49.00,	0.00,		
)	A556 30" PIPE BETW	EEN DISTR BOX A	ND PRIM CLR			
		0.006,	75.00,	0.00,		
	A560 30" PIPE EXIT	FROM DIST BOX	#1			
	1,	2.50,	49.00,	0.00,	2.50,	0.00,
	A565 CHANNEL AFTER 12	WEIR IN DIST E	OX #1			
-	20.00,	5.00, 1.00,	12.50,	5.00,	0.013,	0,
	A570 WEIR IN DIST	BOX #1				
	12.00,	56.75,	0.00,	49.00,	0.00,	
	F70 FULL FLOW THR	ROUGH EAST SIDE				
		0.00,				
·Sa.	A580					•

FIRST CHANNEL IN DIST BOX #1

)	47.33,	20.00,		11.92,	16.00,	0.013,	0,
e i		PE EXIT INTO	DIST BOX #1				
	5	48.00,	2.5,	47.33,	0.00,		
	A590 48" PII	PE FROM AERA	red grit cha	AM TO DIST BOX	#1		
		48.00,	0.01,	1470.00,	0.00,		
	A595 ALL TUF	RNS IN 48" BI	ETWEEN GRIT	CHAM AND DIST	R BOX		
		48.00,	8,	47.33,	0.00,		
	A600 48" PII	PE ENTRANCE A	AFTER AERATE	ED GRIT CHAM			
		48.00,	1.8,	45.25,	0.00,		
	A610 FINAL 0	CHAN IN AERAS	ED GRIT CHA	M/			
		20.00,	34.00,	15.75,	10.00,	0.045,	0,
)	F80 1/3 FLC 2	DW THROUGH EA	ASTSIDE				
		22.00,	0.00,				4
	A620 90 TURN 16	I IN AERATED	GRIT CHAM				
		0.4,	17.00,	45.25,	0.00,	17.30,	0.00,
	A640 WEIR AE	FTER AERATED	GRIT CHAM				
		2.50,	58.75,	0.00,	45.25,	0.00,	
	A650 CHANNEI 12	IN AERATED	GRIT TANK				
	44.20,	20.00,	54.00,	17.30,	17.00,	0.02,	0,
		PE ENTRANCE	TO AERATED (GRIT CHAM			
	5	36.00,	1,	51.00,	0.00,		
	A690			•		•	

A690 36" PIPE IN AERATED GRIT TANK

```
36.00, 0.0025, 72.00, 0.00,
A690
2 45 TURNS IN 36" PIPE
36.00, 0.4, 51.00, 0.00,
A700.
36" PIPE ENTRANCE IN AERATED GRIT CHAM
    36.00, 0.5, 51.50, 0.00,
A705
WEIR IN BEGIN OF AERATED GRIT TANK
    3.00, 60.50, 0.00,
                                51.50
                                       0.00,
F100
FULL FLOW
    66.00, 0.00,
A720
CHAMBER IN AERATED GRIT CHAM
20.00, 5.00, 10.00, 10.00, 0.013, 51.50, 0.00,
                                                     0,
A725
4.5 FT CHAN OPENING
                      51.50, 0.00, 9.75,
       1, 4.50,
                                                    0.00.
A730
90 TURN IN AERATED GRIT CHAM
     0.3, 10.00, 51.50,
                              0.00, 10.00,
                                                    0.00,
A740
```

20.00, 8.00, 9.75, 16.00, 0.013, 51.75, 1.00,

0.

FIRST CHANNEL IN GRIT CHAM

BBBBB BBBBBB	CCCC CCC	BROWN AND CALDWELL Consulting Engineers
BB: BBB	CCC CCC	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\EASTSIDE.sum
BBBBBB	CC	Data file: C:\PROFIL~2\EASTSIDE.pro
BB BBB	CC CC	THERESA STREET WWTP
BB BB	CC CC	EAST SIDE 1971
BB BBB	CC CC	LINCOLN
BBBBBB	CCCCC (see	
BBBBB	CCC	8/13/01 By:MARK RICHARDS

PLANT FLOW = 34.81 CFS OR 22.50 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION	HYDRAULIC GRADE	ENERGY GRADE
A740	FIRST CHANNEL IN GRIT CHAM	61.34	61.34
A650	CHANNEL IN AERATED GRIT TANK	59.70	59.70
A610	FINAL CHAN IN AERATED GRIT CHA	58.31	58.31
A580	FIRST CHANNEL IN DIST BOX #1	57.19	57.19
A565	CHANNEL AFTER WEIR IN DIST BOX	54.26	54.26
A510	WEIR PLATE IN PRIMARY CLR FREE DISCHARGE, FREEBOARD 1.49 V-NOTCH INVERT 53.83	53.93	53.93
A500	EFFLUENT LAUNDER IN PRIMARY CL	52.35	52.35
A490	DROP BOX AFTER PRIM CLR	50.79	50.80
A450	ZONE#1 IN AEARATION BASIN	50.65	50.66
A380	ZONE 3 IN AEARION BASIN	50.48	50.48
A320	MIXED LIQUOR CH IN AERATION BA	48.51	48.52
A270	WEIR PLATE IN FINAL CHL FREE DISCHARGE, FREEBOARD .95 V-NOTCH INVERT 47.83	47.96	47.96
A260	COLLECTION LAUNDER IN FINAL CH	46.88	46.88

A255	DROP BOX AFTER FINAL CLR	46.81	46.81
A210	DIST BOX #2	46.73	46.73
A180	FIRST CHANNEL IN CHL TANK	46.46	46.46
A150	1ST PASS IN CHL TANK	46.38	46.38
A80	FINAL CHANNEL IN CHL TANK	45.53	45.53
A40	JUNCTION BOX BEFORE CREEK	45.00	45.00

BBBBB	CCC	BROWN AND CALDWELL
BBBBBB	CCCCC	Consulting Engineers
BB BBB	CCC CCC	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\NE_GRI~3.SUM
BBBBBB	CC ·	Data file: C:\PROFIL~2\NE_GRI~3.PRO
BB BBB	CC CC	NORTHEAST WWTP
BB BB	CC CC	FROM PARSHALL FLUME TO PS BEFORE TOWER
BB BBB	cc cc	LINCOLN
BBBBBB	CCCCC	
BBBBB	· CCC · · ·	8/14/01 By:MARK RICHARDS

PLANT FLOW = 30.94 CFS OR 20.00 MGD

DOWNSTREAM CONDITIONS:

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A260	CHANNEL BEFORE PARSHALL FLUME	•	43.50	43.91
A250	CHANNEL DOWNSTREAM OF PARSHALL		41.25	41.25
A240	LARGE CHANNEL IN AERATED GRIT		41.24	41.24
A230	WEIR IN AERATED GRIT TANK WS DOWNSTREAM OF WEIR TOP OF WEIR	39.84 40.75	41.24	41.24
A210	SHORT CHANNEL IN AERATED GRIT		39.84	39.84
A130	WIER IN PRIM CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.15 39.61	39.74	39.74
A110	DROP BOX AFTER PRIM CLR		33.06	33.08

BBBBB BBBBBB	cccc	BROWN AND CALDWELL Consulting Engineers
BB BBB	CCC CCC	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\NE GRI~4.SUM
BBBBBB	, cc	Data file: C:\PROFIL~2\NEED3D~1.PRO
BB BBB	CC CC	NORTHEAST WWTP
BB BB	CC CC	FROM PARSHALL FLUME TO PS BEFORE TOWER
BB BBB	CC CC	LINCOLN
BBBBBB	CCCCC	
BBBBB	CCC	8/14/01 By:MARK RICHARDS

PLANT FLOW = 54.15 CFS OR 35.00 MGD

DOWNSTREAM CONDITIONS:

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A260	CHANNEL BEFORE PARSHALL FLUME		44.65	45.05
A250	CHANNEL DOWNSTREAM OF PARSHALL	-	41.49	41.50
A240	LARGE CHANNEL IN AERATED GRIT		41.46	41.46
A230	WEIR IN AERATED GRIT TANK WS DOWNSTREAM OF WEIR TOP OF WEIR	40.08 40.75	41.46	41.46
A210	SHORT CHANNEL IN AERATED GRIT		40.08	40.08
A130	WIER IN PRIM CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	.58 39.61	39.77	39.77
A110	DROP BOX AFTER PRIM CLR		33.17	33.24

BBBBBB BBBBBB	CCCC	BROWN AND CALDWELL Consulting Engineers
BB BBB	ccc ccc	DDOETLE CEDIAL NO 0001
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\NEF121~1.SUM
BBBBBB	CC .	Data file: C:\PROFIL~2\NE_GRI~4.PRO
BB BBB	CC CC	NORTHEAST WWTP
BB BB	CC CC	FROM PARSHALL FLUME TO PS BEFORE TOWER
BB BBB	CC CC	LINCOLN
BBBBBB	CCCCC	er en
BBBBB	CCC	8/14/01 By:MARK RICHARDS
		The state of the s

PLANT FLOW = 77.36 CFS OR 50.00 MGD

DOWNSTREAM CONDITIONS:

ELEMENT	DESCRIPTION	HYDRAULIC GRADE	ENERGY GRADE
A260	CHANNEL BEFORE PARSHALL FLUME	45.42	46.06
A250	CHANNEL DOWNSTREAM OF PARSHALL	41.72	41.73
A240	LARGE CHANNEL IN AERATED GRIT	41.65	41.65
A230	WEIR IN AERATED GRIT TANK WS DOWNSTREAM OF WEIR 40.42 TOP OF WEIR 40.75	41.65	41.65
A210	SHORT CHANNEL IN AERATED GRIT	40.42	40.42
A130	WIER IN PRIM CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT .10 39.61	39.81	39.81
A110	DROP BOX AFTER PRIM CLR	33.37	33.49

BBBBB	CCC	BROWN AND CALDWELL
BBBBBB	CCCCC	Consulting Engineers
BB BBB	ccc ccc	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\NE_GRI~2.SUM
BBBBBB	· CC	Data file: C:\PROFIL~2\NE_GRI~2.PRO
BB BBB	CC CC	NORTHEAST WWTP
BB BB	CC, CC	FROM PARSHALL FLUME TO PS BEFORE TOWER
BB BBB	CC CC	LINCOLN
BBBBBB	CCCCC	
BBBBB	CCC	8/14/01 By:MARK RICHARDS

PLANT FLOW = 12.38 CFS OR 8.00 MGD

DOWNSTREAM CONDITIONS:

ELEMENT	DESCRIPTION		GRADE	ENERGY GRADE
A260	CHANNEL BEFORE PARSHALL FLUME		42.78	43.03
A250	CHANNEL DOWNSTREAM OF PARSHALL		41.02	.41.02
A240	LARGE CHANNEL IN AERATED GRIT		41.02	41.02
A230	WEIR IN AERATED GRIT TANK WS DOWNSTREAM OF WEIR TOP OF WEIR	39.72 40.75	41.02	41.02
A210	SHORT CHANNEL IN AERATED GRIT		39.72	39.72
A130	WIER IN PRIM CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.71 39.61	39.70	39.70
A110	DROP BOX AFTER PRIM CLR		33.01	33.01

BBBBB BBBBBB	cccc.	BROWN AND CALDWELL Consulting Engineers
BB BBB	ccc ccc	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	da ca	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\NE GRI~1.SUM
BBBBBB	CC -	Data file: C:\PROFIL~2\NE GRI~1.PRO
BB BBB	CC CC	NORTHEAST WWTP
BB BB	CC CC	FROM PARSHALL FLUME TO PS BEFORE TOWER
BB BBB	cc cc	LINCOLN
BBBBBB	cccc	
BBBBB	CCC	8/14/01 By:MARK RICHARDS

PLANT FLOW = 24.76 CFS OR 16.00 MGD

DOWNSTREAM CONDITIONS:

ELEMENT	DESCRIPTION	·	HYDRAULIC GRADE	ENERGY GRADE
A260	CHANNEL BEFORE PARSHALL FLUME		43.21	43.62
A250	CHANNEL DOWNSTREAM OF PARSHALL		41.18	41.18
A240	LARGE CHANNEL IN AERATED GRIT		41.17	41.17
A230	WEIR IN AERATED GRIT TANK WS DOWNSTREAM OF WEIR TOP OF WEIR	39.79 40.75	41.17	41.17
A210	SHORT CHANNEL IN AERATED GRIT		39.79	39.79
A130	WIER IN PRIM CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.32 39.61	39.73	39.73
A110	DROP BOX AFTER PRIM CLR		33.04	33.05

BBBBB BBBBBB	CCC	BROWN AND CALDWELL Consulting Engineers
BB BBB	CCC CCC	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\WESTSI~2.SUM
BBBBBB	CC	Data file: C:\PROFIL~2\WESTSI~1.PRO
BB BBB	CC CC	THERESA STREET WWTP
BB BB	CC CC	WEST SIDE 1965
BB BBB	CC CC	LINCOLN
BBBBBB	CCCCC.,,,,,,	
BBBBB	CCC	8/13/01 By:MARK RICHARDS

PLANT FLOW = 15.47 CFS OR 10.00 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A720	CHAMBER IN AERATED GRIT CHAM	:	60.91	60.91
A610	FINAL CHAN IN AERATED GRIT CHA		57.57	57.57
A510	WEIR PLATE IN PRIMARY CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.07 57.28	57.42	57.42
A500	EFFLUENT LAUNDER IN PRIMARY CL		56.21	56.21
A490	DROP BOX AFTER PRIM CLR		53.86	53.87
A459	CHANNEL IN JUCNTION BOX		53.71	53.71
A450	ZONE#1 IN AEARATION BASIN		53.63	53.63
A320	EFFLUENT CH IN AERATION BASIN		49.92	49.92
A304	CHANNEL IN DISTR BOX		49.63	49.63
A270	WEIR PLATE IN FINAL CHL FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.56 49.13	49.22	49.22
A265	COLLECTION LAUNDER IN FINAL CH	•	47.56	47.56
A260	DROP BOX AFTER FINAL CLR		47.47	47.47
A255	JUNCTION MANHOLE #1		47.42	47.42

· ·	A219	JUNCTION BOX #2	47.39	47.39
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A215	JUNCTION BOX #3	47.39	47.39
	A210	DIST BOX #2	47.38	47.38
	A180	FIRST CHANNEL IN CHL TANK	46.90	46.90
	A150	1ST PASS IN CHL TANK	46.75	46.75
	08A	FINAL CHANNEL IN CHL TANK	46.12	46.13
÷	A40	JUNCTION BOX BEFORE CREEK	45.18	45.18

BBBBB BBBBBB	CCCC CCCC	BROWN AND CALDWELL Consulting Engineers
BB BBB	CCC CCC	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	cc cċ	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\WESTSI~3.SUM
BBBBBB	CC .	Data file: C:\PROFIL~2\WESTSI~2.PRO
BB BBB	CC CC	THERESA STREET WWTP
BB BB	CC CC	WEST SIDE 1965
BB BBB	CC CC	LINCOLN
BBBBBB	CCCCC	
BBBBB	CCC	8/13/01 By:MARK RICHARDS

PLANT FLOW = 19.34 CFS OR 12.50 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A720	CHAMBER IN AERATED GRIT CHAM		60.98	60.98
A610	FINAL CHAN IN AERATED GRIT CHA	₩.,	57.66	57.66
A510	WEIR PLATE IN PRIMARY CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	.97 57.28	57.43	57.43
A500	EFFLUENT LAUNDER IN PRIMARY CL		56.31	56.31
A490	DROP BOX AFTER PRIM CLR		54.13	54.13
A459	CHANNEL IN JUCNTION BOX		53.89	53.89
A450	ZONE#1 IN AEARATION BASIN	+	53.76	53.76
A320	EFFLUENT CH IN AERATION BASIN		50.32	50.32
A304	CHANNEL IN DISTR BOX		49.87	49.87
A270	WEIR PLATE IN FINAL CHL FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	.68 49.13	49.22	49.22
A265	COLLECTION LAUNDER IN FINAL CH		48.44	48.44
A260	DROP BOX AFTER FINAL CLR		48.41	48.41
A255	JUNCTION MANHOLE #1		48.33	48.33

	A219	JUNCTION BOX #2	48.29	48.29
(called a land	A215	JUNCTION BOX #3	48.28	48.28
	A210	DIST BOX #2	48.27	48.27
	A180	FIRST CHANNEL IN CHL TANK	47.52	47.52
	A150	1ST PASS IN CHL TANK	47.29	47.29
	A80	FINAL CHANNEL IN CHL TANK	46.88	46.89
* .	A40	JUNCTION BOX BEFORE CREEK	45.40	45.42

BBBBB BBBBBB	cccc	BROWN AND CALDWELL Consulting Engineers
BB BBB	ccc ccc	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC ·	
BBBBB	CC	File name: C:\PROFIL~2\WESTSI~1.SUM
BBBBBB	CC .	Data file: C:\PROFIL~2\WESTSI~3.PRO
BB BBB	CC CC	THERESA STREET WWTP
BB BB	CC CC	WEST SIDE 1965
BB BBB	cc cc	LINCOLN
BBBBBB	CCCCC	
BBBBB	CCC "I	8/13/01 By:MARK RICHARDS

PLANT FLOW = 23.21 CFS OR 15.00 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET

HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A720	CHAMBER IN AERATED GRIT CHAM		61.06	61.06
A610	FINAL CHAN IN AERATED GRIT CHA		57.77	57.77
A510	WEIR PLATE IN PRIMARY CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	.85 57.28	57.43	57.43
A500	EFFLUENT LAUNDER IN PRIMARY CL	·	56.42	56.42
A490	DROP BOX AFTER PRIM CLR		54.41	54.42
A459	CHANNEL IN JUCNTION BOX		54.07	54.07
A450	ZONE#1 IN AEARATION BASIN		53.88	53.88
A320	EFFLUENT CH IN AERATION BASIN		51.27	51.27
A304	CHANNEL IN DISTR BOX	·	50.61	50.62
A270	WEIR PLATE IN FINAL CHL WEIR SUBMERGED, W.S. DS V-NOTCH INVERT	49.69 49.13	49.69	49.69
A265	COLLECTION LAUNDER IN FINAL CH		49.69	49.69
A260	DROP BOX AFTER FINAL CLR		49.67	49.67
A255	JUNCTION MANHOLE #1		49.55	49.55

	A219	JUNCTION BOX #2	49.49	49.49
	A215	JUNCTION BOX #3	49.48	49.48
	A210	DIST BOX #2	49.46	49.47
	A180	FIRST CHANNEL IN CHL TANK	48.38	48.39
	A150	1ST PASS IN CHL TANK	48.05	.48.05
·	A80	FINAL CHANNEL IN CHL TANK	47.80	47.82
	A40	JUNCTION BOX BEFORE CREEK	45.68	45.70
				·
*			e e	

BBBBB BBBBBB	cccc	BROWN AND CALDWELL Consulting Engineers
BB BBB	ČCC CCC	
BB BB	CC CC	PROFILE SERIAL NO. 9901
BB BBB	CC CC	Version 2.00
BBBBBB	CC	
BBBBB	CC	File name: C:\PROFIL~2\WESTSIDE.sum
BBBBBB	CC	Data file: C:\PROFIL~2\WESTSIDE.pro
BB BBB	CC CC	THERESA STREET WWTP
BB BB	cc cc	WEST SIDE 1965
BB BBB	CC CC	LINCOLN
BBBBBB	CCCCC	
BBBBB	' CCC '"	8/13/01 By:MARK RICHARDS

PLANT FLOW = 11.60 CFS OR 7.50 MGD

DOWNSTREAM CONDITIONS:

ENERGY GRADE = 44.77 FEET HYDRAULIC GRADE = 44.77 FEET

ELEMENT	DESCRIPTION		HYDRAULIC GRADE	ENERGY GRADE
A720	CHAMBER IN AERATED GRIT CHAM		60.83	60.83
A610	FINAL CHAN IN AERATED GRIT CHA		57.50	57.50
A510	WEIR PLATE IN PRIMARY CLR FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.16 57.28	57.41	57.41
A500	EFFLUENT LAUNDER IN PRIMARY CL		56.11	56.11
A490	DROP BOX AFTER PRIM CLR		53.63	53.64
A459	CHANNEL IN JUCNTION BOX	•	53.55	53.55
A450	ZONE#1 IN AEARATION BASIN		53.50	53.50
A320	EFFLUENT CH IN AERATION BASIN		49.60	49.60
A304	CHANNEL IN DISTR BOX	÷	49.44	49.44
A270	WEIR PLATE IN FINAL CHL FREE DISCHARGE, FREEBOARD V-NOTCH INVERT	1.61 49.13	49.21	49.21
A265	COLLECTION LAUNDER IN FINAL CH		47.52	47.52
A260	DROP BOX AFTER FINAL CLR		46.78	46.78
A255	JUNCTION MANHOLE #1		46.75	46.75

A219	JUNCTION BOX #2	46.74	46.74
A215	JUNCTION BOX #3	46.74	46.74
A210	DIST BOX #2	46.73	46.73
A180	FIRST CHANNEL IN CHL TANK	46.46	46.46
A150	1ST PASS IN CHL TANK	46.38	46.38
A80	FINAL CHANNEL IN CHL TANK	45.53	45.53
A40	JUNCTION BOX BEFORE CREEK	45.00	45.00